Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
448 result(s) for "Arachnid Vectors - classification"
Sort by:
Emerging tick-borne infections in mainland China: an increasing public health threat
Since the beginning of the 1980s, 33 emerging tick-borne agents have been identified in mainland China, including eight species of spotted fever group rickettsiae, seven species in the family Anaplasmataceae, six genospecies in the complex Borrelia burgdorferi sensu lato, 11 species of Babesia, and the virus causing severe fever with thrombocytopenia syndrome. In this Review we have mapped the geographical distributions of human cases of infection. 15 of the 33 emerging tick-borne agents have been reported to cause human disease, and their clinical characteristics have been described. The non-specific clinical manifestations caused by tick-borne pathogens present a major diagnostic challenge and most physicians are unfamiliar with the many tick-borne diseases that present with non-specific symptoms in the early stages of the illness. Advances in and application of modern molecular techniques should help with identification of emerging tick-borne pathogens and improve laboratory diagnosis of human infections. We expect that more novel tick-borne infections in ticks and animals will be identified and additional emerging tick-borne diseases in human beings will be discovered.
Dermacentor reticulatus: a vector on the rise
Dermacentor reticulatus is a hard tick species with extraordinary biological features. It has a high reproduction rate, a rapid developmental cycle, and is also able to overcome years of unfavourable conditions. Dermacentor reticulatus can survive under water for several months and is cold-hardy even compared to other tick species. It has a wide host range: over 60 different wild and domesticated hosts are known for the three active developmental stages. Its high adaptiveness gives an edge to this tick species as shown by new data on the emergence and establishment of D. reticulatus populations throughout Europe. The tick has been the research focus of a growing number of scientists, physicians and veterinarians. Within the Web of Science database, more than a fifth of the over 700 items published on this species between 1897 and 2015 appeared in the last three years (2013–2015). Here we attempt to synthesize current knowledge on the systematics, ecology, geographical distribution and recent spread of the species and to highlight the great spectrum of possible veterinary and public health threats it poses. Canine babesiosis caused by Babesia canis is a severe leading canine vector-borne disease in many endemic areas. Although less frequently than Ixodes ricinus , D. reticulatus adults bite humans and transmit several Rickettsia spp., Omsk haemorrhagic fever virus or Tick-borne encephalitis virus. We have not solely collected and reviewed the latest and fundamental scientific papers available in primary databases but also widened our scope to books, theses, conference papers and specialists colleagues’ experience where needed. Besides the dominant literature available in English, we also tried to access scientific literature in German, Russian and eastern European languages as well. We hope to inspire future research projects that are necessary to understand the basic life-cycle and ecology of this vector in order to understand and prevent disease threats. We conclude that although great strides have been made in our knowledge of the eco-epidemiology of this species, several gaps still need to be filled with basic research, targeting possible reservoir and vector roles and the key factors resulting in the observed geographical spread of D. reticulatus .
The Rhipicephalus sanguineus group: updated list of species, geographical distribution, and vector competence
The Rhipicephalus sanguineus group is an assembly of species morphologically and phylogenetically related to Rhipicephalus sanguineus sensu stricto. The taxonomy and systematics of this species group have remained obscure for a long time, but extensive research conducted during the past two decades has closed many knowledge gaps. These research advancements culminated in the redescription of R. sanguineus sensu stricto, with subsequent revalidation of former synonyms ( Rhipicephalus linnaei , Rhipicephalus rutilus , and Rhipicephalus secundus ) and even the description of new species ( Rhipicephalus afranicus and Rhipicephalus hibericus ). With a much clearer picture of the taxonomy of these species, we present an updated list of species belonging to the R. sanguineus group, along with a review of their geographic distribution and vector role for various pathogens of animals and humans. We also identify knowledge gaps to be bridged in future studies. Graphical abstract
Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm
The twin concepts of zooprophylaxis and the dilution effect originated with vector-borne diseases (malaria), were driven forward by studies on Lyme borreliosis and have now developed into the mantra “biodiversity protects against disease”. The basic idea is that by diluting the assemblage of transmission-competent hosts with non-competent hosts, the probability of vectors feeding on transmission-competent hosts is reduced and so the abundance of infected vectors is lowered. The same principle has recently been applied to other infectious disease systems – tick-borne, insect-borne, indirectly transmitted via intermediate hosts, directly transmitted. It is claimed that the presence of extra species of various sorts, acting through a variety of distinct mechanisms, causes the prevalence of infectious agents to decrease. Examination of the theoretical and empirical evidence for this hypothesis reveals that it applies only in certain circumstances even amongst tick-borne diseases, and even less often if considering the correct metric – abundance rather than prevalence of infected vectors. Whether dilution or amplification occurs depends more on specific community composition than on biodiversity per se. We warn against raising a straw man, an untenable argument easily dismantled and dismissed. The intrinsic value of protecting biodiversity and ecosystem function outweighs this questionable utilitarian justification.
Multiple Pathogens Including Potential New Species in Tick Vectors in Côte d’Ivoire
Our study aimed to assess the presence of different pathogens in ticks collected in two regions in Côte d'Ivoire. Real-time PCR and standard PCR assays coupled to sequencing were used. Three hundred and seventy eight (378) ticks (170 Amblyomma variegatum, 161 Rhipicepalus microplus, 3 Rhipicephalus senegalensis, 27 Hyalomma truncatum, 16 Hyalomma marginatum rufipes, and 1 Hyalomma impressum) were identified and analyzed. We identified as pathogenic bacteria, Rickettsia africae in Am. variegatum (90%), Rh. microplus (10%) and Hyalomma spp. (9%), Rickettsia aeschlimannii in Hyalomma spp. (23%), Rickettsia massiliae in Rh. senegalensis (33%) as well as Coxiella burnetii in 0.2%, Borrelia sp. in 0.2%, Anaplasma centrale in 0.2%, Anaplasma marginale in 0.5%, and Ehrlichia ruminantium in 0.5% of all ticks. Potential new species of Borrelia, Anaplasma, and Wolbachia were detected. Candidatus Borrelia africana and Candidatus Borrelia ivorensis (detected in three ticks) are phylogenetically distant from both the relapsing fever group and Lyme disease group borreliae; both were detected in Am. variegatum. Four new genotypes of bacteria from the Anaplasmataceae family were identified, namely Candidatus Anaplasma ivorensis (detected in three ticks), Candidatus Ehrlichia urmitei (in nine ticks), Candidatus Ehrlichia rustica (in four ticks), and Candidatus Wolbachia ivorensis (in one tick). For the first time, we demonstrate the presence of different pathogens such as R. aeschlimannii, C. burnetii, Borrelia sp., A. centrale, A. marginale, and E. ruminantium in ticks in Côte d'Ivoire as well as potential new species of unknown pathogenicity.
Rhipicephalus sanguineus sensu lato from dogs and dromedary camels in Riyadh, Saudi Arabia: low prevalence of vector-borne pathogens in dogs detected using multiplexed tandem PCR panel
Despite the global distribution of the brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) sensu lato (s.l.), limited information exists about their identity from the Arabian Peninsula. Ticks from free roaming urban dogs and dromedary camels in Riyadh, Saudi Arabia were morphologically identified, confirmed with scanning electron microscopy and characterised at mitochondrial DNA (cox1, 12S rDNA and 16S rDNA). A total of 186 ticks were collected from 65 free roaming dogs (n = 73) and 84 dromedary camels (n = 113). Morphologically, 5.9% (11/186) were R. sanguineus s.l. and Hyalomma spp. (93.5%, 174/186). From within R. sanguineus s.l., the presence of Rhipicephalus cf. camicasi Morel, Mouchet et Rodhain, 1976 (1 dog, 2 camels) and Rhipicephalus turanicus Pomerantsev, 1936 (1 camel) is reported. The examined R. cf. camicasi form a sister group to R. sanguineus s.l. tropical lineage at all DNA markers. Dogs were parasitised by Hyalomma dromedarii Koch, 1844 (n = 59), Hyalomma impeltatum Schulze et Schlottke, 1930 (n = 1), Hyalomma excavatum Koch, 1844 (n = 2), Hyalomma turanicum Pomerantsev, 1946 (n = 1) and Hyalomma rufipes Koch,1844 (n = 1). DNA from dog blood (n = 53) from Riyadh confirmed a low prevalence of canine vector-borne pathogens that does not exceed 5.7% for Babesia spp., Mycoplasma spp., Anaplasma platys, Hepatozoon canis and Ehrlichia canis using multiplexed tandem PCR (MT-PCR) and diagnostic PCR. Low prevalence of R. sanguineus s.l. on dogs likely contributed to the low level of canine vector-borne pathogens in Saudi Arabia. We demonstrate that dogs in the central Arabian Peninsula are more commonly parasitised by Hyalomma spp. than R. sanguineus s.l.
Ticks infesting domestic dogs in the UK: a large-scale surveillance programme
Background Recent changes in the distribution of tick vectors and the incidence of tick-borne disease, driven variously by factors such as climate change, habitat modification, increasing host abundance and the increased movement of people and animals, highlight the importance of ongoing, active surveillance. This paper documents the results of a large-scale survey of tick abundance on dogs presented to veterinary practices in the UK, using a participatory approach that allows relatively cost- and time-effective extensive data collection. Methods Over a period of 16 weeks (April–July 2015), 1094 veterinary practices were recruited to monitor tick attachment to dogs and provided with a tick collection and submission protocol. Recruitment was encouraged through a national publicity and communication initiative. Participating practices were asked to select five dogs at random each week and undertake a thorough, standardized examination of each dog for ticks. The clinical history and any ticks were then sent to the investigators for identification. Results A total of 12,000 and 96 dogs were examined and 6555 tick samples from infested dogs were received. Ixodes ricinus (Linnaeus) was identified on 5265 dogs (89 %), Ixodes hexagonus Leach on 577 (9.8 %) and Ixodes canisuga Johnston on 46 (0.8 %). Ten dogs had Dermacentor reticulatus (Fabricius), one had Dermacentor variabilis (Say), three had Haemaphysalis punctata Canesteini & Fanzago and 13 had Rhipicephalus sanguineus Latreille. 640 ticks were too damaged for identification. All the R. sanguineus and the single D. variabilis were on dogs with a recent history of travel outside the UK. The overall prevalence of tick attachment was 30 % (range 28–32 %). The relatively high prevalence recorded is likely to have been inflated by the method of participant recruitment. Conclusion The data presented provide a comprehensive spatial understanding of tick distribution and species abundance in the UK against which future changes can be compared. Relative prevalence maps show the highest rates in Scotland and south west England providing a valuable guide to tick-bite risk in the UK.
Molecular Detection and Identification of Spotted Fever Group Rickettsiae in Ticks Collected from the West Bank, Palestinian Territories
Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group (SFG) rickettsiae. Although Spotted Fever is prevalent in the Middle East, no reports for the presence of tick-borne pathogens are available or any studies on the epidemiology of this disease in the West Bank. We aimed to identify the circulating hard tick vectors and genetically characterize SFG Rickettsia species in ixodid ticks from the West Bank-Palestinian territories. A total of 1,123 ixodid ticks belonging to eight species (Haemaphysalis parva, Haemaphysalis adleri, Rhipicephalus turanicus, Rhipicephalus sanguineus, Rhipicephalus bursa, Hyalomma dromedarii, Hyalomma aegyptium and Hyalomma impeltatum) were collected from goats, sheep, camels, dogs, a wolf, a horse and a tortoise in different localities throughout the West Bank during the period of January-April, 2014. A total of 867 ticks were screened for the presence of rickettsiae by PCR targeting a partial sequence of the ompA gene followed by sequence analysis. Two additional genes, 17 kDa and 16SrRNA were also targeted for further characterization of the detected Rickettsia species. Rickettsial DNA was detected in 148 out of the 867 (17%) tested ticks. The infection rates in Rh. turanicus, Rh. sanguineus, H. adleri, H. parva, H. dromedarii, and H. impeltatum ticks were 41.7, 11.6, 16.7, 16.2, 11.8 and 20%, respectively. None of the ticks, belonging to the species Rh. bursa and H. aegyptium, were infected. Four SFG rickettsiae were identified: Rickettsia massiliae, Rickettsia africae, Candidatus Rickettsia barbariae and Candidatus Rickettsia goldwasserii. The results of this study demonstrate the geographic distribution of SFG rickettsiae and clearly indicate the presence of at least four of them in collected ticks. Palestinian clinicians should be aware of emerging tick-borne diseases in the West Bank, particularly infections due to R. massiliae and R. africae.
Wheat curl mite, Aceria tosichella, and transmitted viruses: an expanding pest complex affecting cereal crops
The wheat curl mite (WCM), Aceria tosichella, and the plant viruses it transmits represent an invasive mite-virus complex that has affected cereal crops worldwide. The main damage caused by WCM comes from its ability to transmit and spread multiple damaging viruses to cereal crops, with Wheat streak mosaic virus (WSMV) and Wheat mosaic virus (WMoV) being the most important. Although WCM and transmitted viruses have been of concern to cereal growers and researchers for at least six decades, they continue to represent a challenge. In older affected areas, for example in North America, this mite-virus complex still has significant economic impact. In Australia and South America, where this problem has only emerged in the last decade, it represents a new threat to winter cereal production. The difficulties encountered in making progress towards managing WCM and its transmitted viruses stem from the complexity of the pathosystem. The most effective methods for minimizing losses from WCM transmitted viruses in cereal crops have previously focused on cultural and plant resistance methods. This paper brings together information on biological and ecological aspects of WCM, including its taxonomic status, occurrence, host plant range, damage symptoms and economic impact. Information about the main viruses transmitted by WCM is also included and the epidemiological relationships involved in this vectored complex of viruses are also addressed. Management strategies that have been directed at this mite-virus complex are presented, including plant resistance, its history, difficulties and advances. Current research perspectives to address this invasive mite-virus complex and minimize cereal crop losses worldwide are also discussed.
Inhibition of the endosymbiont “Candidatus Midichloria mitochondrii” during 16S rRNA gene profiling reveals potential pathogens in Ixodes ticks from Australia
Background The Australian paralysis tick ( Ixodes holocyclus ) is of significant medical and veterinary importance as a cause of dermatological and neurological disease, yet there is currently limited information about the bacterial communities harboured by these ticks and the risk of infectious disease transmission to humans and domestic animals. Ongoing controversy about the presence of Borrelia burgdorferi sensu lato (the aetiological agent of Lyme disease) in Australia increases the need to accurately identify and characterise bacteria harboured by I. holocyclus ticks. Methods Universal PCR primers were used to amplify the V1-2 hyper-variable region of bacterial 16S rRNA genes present in DNA samples from I. holocyclus and I. ricinus ticks, collected in Australia and Germany respectively. The 16S amplicons were purified, sequenced on the Ion Torrent platform, and analysed in USEARCH, QIIME, and BLAST to assign genus and species-level taxonomy. Initial analysis of I. holocyclus and I. ricinus identified that > 95 % of the 16S sequences recovered belonged to the tick intracellular endosymbiont “ Candidatus Midichloria mitochondrii” (CMM). A CMM-specific blocking primer was designed that decreased CMM sequences by approximately 96 % in both tick species and significantly increased the total detectable bacterial diversity, allowing identification of medically important bacterial pathogens that were previously masked by CMM. Results Borrelia burgdorferi sensu lato was identified in German I. ricinus , but not in Australian I. holocyclus ticks. However, bacteria of medical significance were detected in I. holocyclus ticks, including a Borrelia relapsing fever group sp., Bartonella henselae, novel “ Candidatus Neoehrlichia” spp., Clostridium histolyticum , Rickettsia spp., and Leptospira inadai . Conclusions Abundant bacterial endosymbionts, such as CMM, limit the effectiveness of next-generation 16S bacterial community profiling in arthropods by masking less abundant bacteria, including pathogens. Specific blocking primers that inhibit endosymbiont 16S amplification during PCR are an effective way of reducing this limitation. Here, this strategy provided the first evidence of a relapsing fever Borrelia sp. and of novel “ Candidatus Neoehrlichia” spp. in Australia. Our results raise new questions about tick-borne pathogens in I. holocyclus ticks.