Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
874 result(s) for "Areca"
Sort by:
Iron Deficiency Leads to Chlorosis Through Impacting Chlorophyll Synthesis and Nitrogen Metabolism in Areca catechu L
Deficiency of certain elements can cause leaf chlorosis in Areca catechu L. trees, which causes considerable production loss. The linkage between nutrient deficiency and chlorosis phenomenon and physiological defect in A. catechu remains unclear. Here, we found that low iron supply is a determinant for chlorosis of A. catechu seedling, and excessive iron supply resulted in dark green leaves. We also observed morphological characters of A. catechu seedlings under different iron levels and compared their fresh weight, chlorophyll contents, chloroplast structures and photosynthetic activities. Results showed that iron deficiency directly caused chloroplast degeneration and reduced chlorophyll synthesis in chlorosis leaves, while excessive iron treatment can increase chlorophyll contents, chloroplasts sizes, and inflated starch granules. However, both excessive and deficient of iron decreases fresh weight and photosynthetic rate in A. catechu seedlings. Therefore, we applied transcriptomic and metabolomic approaches to understand the effect of different iron supply to A. catechu seedlings. The genes involved in nitrogen assimilation pathway, such as NR (nitrate reductase) and GOGAT (glutamate synthase), were significantly down-regulated under both iron deficiency and excessive iron. Moreover, the accumulation of organic acids and flavonoids indicated a potential way for A. catechu to endure iron deficiency. On the other hand, the up-regulation of POD-related genes was assumed to be a defense strategy against the excessive iron toxicity. Our data demonstrated that A. catechu is an iron-sensitive species, therefore the precise control of iron level is believed to be the key point for A. catechu cultivation.
Genome-Wide Association Analysis of Fruit Shape-Related Traits in Areca catechu
The areca palm (Areca catechu L.) is one of the most economically important palm trees in tropical areas. To inform areca breeding programs, it is critical to characterize the genetic bases of the mechanisms that regulate areca fruit shape and to identify candidate genes related to fruit-shape traits. However, few previous studies have mined candidate genes associated with areca fruit shape. Here, the fruits produced by 137 areca germplasms were divided into three categories (spherical, oval, and columnar) based on the fruit shape index. A total of 45,094 high-quality single-nucleotide polymorphisms (SNPs) were identified across the 137 areca cultivars. Phylogenetic analysis clustered the areca cultivars into four subgroups. A genome-wide association study that used a mixed linear model identified the 200 loci that were the most significantly associated with fruit-shape traits in the germplasms. In addition, 86 candidate genes associated with areca fruit-shape traits were further mined. Among the proteins encoded by these candidate genes were UDP-glucosyltransferase 85A2, the ABA-responsive element binding factor GBF4, E3 ubiquitin-protein ligase SIAH1, and LRR receptor-like serine/threonine-protein kinase ERECTA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the gene that encoded UDP-glycosyltransferase, UGT85A2, was significantly upregulated in columnar fruits as compared to spherical and oval fruits. The identification of molecular markers that are closely related to fruit-shape traits not only provides genetic data for areca breeding, but it also provides new insights into the shape formation mechanisms of drupes.
Bioactive Components of Areca Nut: An Overview of Their Positive Impacts Targeting Different Organs
Areca catechu L. is a widely cultivated tropical crop in Southeast Asia, and its fruit, areca nut, has been consumed as a traditional Chinese medicinal material for more than 10,000 years, although it has recently attracted widespread attention due to potential hazards. Areca nut holds a significant position in traditional medicine in many areas and ranks first among the four southern medicines in China. Numerous bioactive compounds have been identified in areca nuts, including alkaloids, polyphenols, polysaccharides, and fatty acids, which exhibit diverse bioactive functions, such as anti-bacterial, deworming, anti-viral, anti-oxidant, anti-inflammatory, and anti-tumor effects. Furthermore, they also display beneficial impacts targeting the nervous, digestive, and endocrine systems. This review summarizes the pharmacological functions and underlying mechanisms of the bioactive ingredients in areca nut. This helps to ascertain the beneficial components of areca nut, discover its medicinal potential, and guide the utilization of the areca nut.
Exposure assessment to areca alkaloids in the Chinese populations through areca nut chewing
Chewing areca nuts is popular in China. Areca alkaloids are the major toxic compounds in areca nuts. In this study, the levels of four areca alkaloids (i.e. arecoline, arecaidine, guvacoline and guvacine) in 119 areca nut samples were analyzed and 3030 areca nut consumption questionnaires were collected to investigate the exposure to areca alkaloids in the Chinese populations through areca nut chewing. The levels of arecoline, arecaidine, guvacoline and guvacine in different areca nut products were 0.46–4.97 mg/g, 0.57–7.51 mg/g, 0.08–1.44 mg/g and 0.03–8.48 mg/g, respectively. Chewing fresh areca fruits was the main source of arecoline and the total areca alkaloids exposure. The estimated daily intake (EDI) of arecoline and the total areca alkaloids for the Chinese populations were 1.126 and 2.625 mg/kg BW/day for average exposure, 4.411 and 9.739 mg/kg BW/day for high exposure (P95th). The EDI varied with age and gender. The young male population (≤ 34 years) had the highest EDI than other populations. Concentrated and focused efforts are required to educate the general public, especially the young male population, about the risks of areca nut chewing to reduce exposure to areca alkaloids of the Chinese population.
Whole Genome Sequencing and Analysis of Plant Growth Promoting Bacteria Isolated from the Rhizosphere of Plantation Crops Coconut, Cocoa and Arecanut
Coconut, cocoa and arecanut are commercial plantation crops that play a vital role in the Indian economy while sustaining the livelihood of more than 10 million Indians. According to 2012 Food and Agricultural organization's report, India is the third largest producer of coconut and it dominates the production of arecanut worldwide. In this study, three Plant Growth Promoting Rhizobacteria (PGPR) from coconut (CPCRI-1), cocoa (CPCRI-2) and arecanut (CPCRI-3) characterized for the PGP activities have been sequenced. The draft genome sizes were 4.7 Mb (56% GC), 5.9 Mb (63.6% GC) and 5.1 Mb (54.8% GB) for CPCRI-1, CPCRI-2, CPCRI-3, respectively. These genomes encoded 4056 (CPCRI-1), 4637 (CPCRI-2) and 4286 (CPCRI-3) protein-coding genes. Phylogenetic analysis revealed that both CPCRI-1 and CPCRI-3 belonged to Enterobacteriaceae family, while, CPCRI-2 was a Pseudomonadaceae family member. Functional annotation of the genes predicted that all three bacteria encoded genes needed for mineral phosphate solubilization, siderophores, acetoin, butanediol, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, phenazine, 4-hydroxybenzoate, trehalose and quorum sensing molecules supportive of the plant growth promoting traits observed in the course of their isolation and characterization. Additionally, in all the three CPCRI PGPRs, we identified genes involved in synthesis of hydrogen sulfide (H2S), which recently has been proposed to aid plant growth. The PGPRs also carried genes for central carbohydrate metabolism indicating that the bacteria can efficiently utilize the root exudates and other organic materials as energy source. Genes for production of peroxidases, catalases and superoxide dismutases that confer resistance to oxidative stresses in plants were identified. Besides these, genes for heat shock tolerance, cold shock tolerance and glycine-betaine production that enable bacteria to survive abiotic stress were also identified.
Global burden of oral cancer in 2022 attributable to smokeless tobacco and areca nut consumption: a population attributable fraction analysis
Consuming products that contain smokeless tobacco or areca nut increases the risk of oral cancer. We aimed to estimate the burden of oral cancer attributable to smokeless tobacco or areca nut consumption globally and by type of smokeless tobacco or areca nut product in four major consuming countries. We calculated population attributable fractions (PAFs) using prevalence of current use of smokeless tobacco or areca nut products from national surveys and corresponding risks of oral cancer from the literature. We applied PAFs to national estimates of oral cancer incidence in 2022 from the Global Cancer Observatory's Cancer Today database to obtain cases attributable to smokeless tobacco or areca nut consumption. We modelled 95% uncertainty intervals (UIs) using Monte Carlo simulations. Globally, an estimated 120 200 (95% UI 115 300–124 300) cases of oral cancer diagnosed in 2022 were attributable to smokeless tobacco or areca nut consumption, accounting for 30·8% (95% UI 29·6–31·9) of all oral cancer cases (120 200 of 389 800). An estimated 77% of attributable cases were among male patients (92 600 cases, 95% UI 88 000–96 500) and 23% were among female patients (27 600 cases, 26 000–29 000). Regions with the highest PAFs were Melanesia, Micronesia, and Polynesia (78·6%, 95% UI 74·4–80·5), southcentral Asia (57·5%, 54·8–59·5), and southeastern Asia (19·8%, 19·0–20·6). Lower-middle-income countries represented 90·2% of the world total attributable cases (108 400 cases, 95% UI 103 400–112 200). Our findings suggest that one in three cases of oral cancer globally are attributable to smokeless tobacco or areca nut consumption, and could be prevented through smokeless tobacco and areca nut control. Global cancer control efforts must incorporate further measures to reduce smokeless tobacco and areca nut consumption in populations with the largest attributable burden. French National Cancer Institute.
The Controversial Roles of Areca Nut: Medicine or Toxin?
Areca nut (AN) is used for traditional herbal medicine and social activities in several countries. It was used as early as about A.D. 25-220 as a remedy. Traditionally, AN was applied for several medicinal functions. However, it was also reported to have toxicological effects. In this review article, we updated recent trends of research in addition to acquire new knowledge about AN. First, the history of AN usage from ancient years was described. Then, the chemical components of AN and their biological functions was compared; arecoline is an especially important compound in AN. AN extract has different effects caused by different components. Thus, the dual effects of AN with pharmacological and toxicological effects were summarized. Finally, we described perspectives, trends and challenges of AN. It will provide the insight of removing or modifying the toxic compounds of AN extractions for enhancing their pharmacological activity to treat several diseases in future applications.
Association of Betel Nut with Carcinogenesis: Revisit with a Clinical Perspective
Betel nut (BN), betel quid (BQ) and products derived from them are widely used as a socially endorsed masticatory product. The addictive nature of BN/BQ has resulted in its widespread usage making it the fourth most abused substance by humans. Progressively, several additives, including chewing tobacco, got added to simple BN preparations. This addictive practice has been shown to have strong etiological correlation with human susceptibility to cancer, particularly oral and oropharyngeal cancers.The PUBMED database was searched to retrieve all relevant published studies in English on BN and BQ, and its association with oral and oropharyngeal cancers. Only complete studies directly dealing with BN/BQ induced carcinogenesis using statistically valid and acceptable sample size were analyzed. Additional relevant information available from other sources was also considered.This systematic review attempts to put in perspective the consequences of this widespread habit of BN/BQ mastication, practiced by approximately 10% of the world population, on oral cancer with a clinical perspective. BN/BQ mastication seems to be significantly associated with susceptibility to oral and oropharyngeal cancers. Addition of tobacco to BN has been found to only marginally increase the cancer risk. Despite the widespread usage of BN/BQ and its strong association with human susceptibility to cancer, no serious strategy seems to exist to control this habit. The review, therefore, also looks at various preventive efforts being made by governments and highlights the multifaceted intervention strategies required to mitigate and/or control the habit of BN/BQ mastication.
Defining a global research and policy agenda for betel quid and areca nut
Betel quid and areca nut are known risk factors for many oral and oesophageal cancers, and their use is highly prevalent in the Asia-Pacific region. Additionally, betel quid and areca nut are associated with health effects on the cardiovascular, nervous, gastrointestinal, metabolic, respiratory, and reproductive systems. Unlike tobacco, for which the WHO Framework Convention on Tobacco Control provides evidence-based policies for reducing tobacco use, no global policy exists for the control of betel quid and areca nut use. Multidisciplinary research is needed to address this neglected global public health emergency and to mobilise efforts to control betel quid and areca nut use. In addition, future research is needed to advance our understanding of the basic biology, mechanisms, and epidemiology of betel quid and areca nut use, to advance possible prevention and cessation programmes for betel quid and areca nut users, and to design evidence-based screening and early diagnosis programmes to address the growing burden of cancers that are associated with use.
Development of a Multiplex RT-PCR Assay for Simultaneous Detection of Velarivirus arecae , Arepavirus arecae and Arepavirus arecamaculatum
Areca Palm Velarivirus 1 ( , APV1), Areca palm necrotic ringspot virus ( , ANRSV), and Areca palm necrotic spindle-spot virus ( , ANSSV) are major viral pathogens that cause significant economic losses in areca palm cultivation. Rapid and reliable detection methods are essential for the early diagnosis and management of these viruses in affected regions. Specific primers were designed based on the (CP) gene sequences of the three target viruses: APV1. A specific primer pair targeting the (CP) region was designed for APV1, while primer pairs for ANRSV and ANSSV were designed based on conserved sequences surrounding the Nla-VPg/Nla-Pro protease cleavage sites. A multiplex reverse transcription-polymerase chain reaction (multiplex RT-PCR) assay was subsequently developed to simultaneously amplify the target sequences. The multiplex RT-PCR detection system was optimized by adjusting critical parameters, including the annealing temperature, extension time, and number of cycles, to ensure high specificity and sensitivity. The optimized multiplex reverse transcription-polymerase chain reaction (multiplex RT-PCR) successfully yielded distinct amplification products for all three target viruses: 938 bp for APV1, 527 bp for ANRSV, and 250 bp for ANSSV. The size differences among the amplicons allowed them to be clearly distinguishable by 2% agarose gel electrophoresis. The optimal reaction conditions were determined to be an annealing temperature of 53.4 °C and 35 cycles. Applying the optimized multiplex RT-PCR method, we analyzed 414 field samples collected from Hainan province. APV1 was identified as the most prevalent virus, detected in 22.71% of the total samples. ANRSV and ANSSV were detected at significantly lower rates, in 3.86% and 0.2% of the samples, respectively. Virus detection in areca samples from Hainan Island revealed clear regional differences in disease incidence, with higher rates in the eastern and central regions-particularly Baoting, Lingshui, Wanning, and Qionghai-averaging 46.73%. Together, these results demonstrate that the developed multiplex RT-PCR is a sensitive and practical tool for the routine molecular diagnosis and epidemiological investigation of APV1, ANRSV, and ANSSV in areca palms.