Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,859 result(s) for "Arrestin"
Sort by:
Distinct G protein-coupled receptor phosphorylation motifs modulate arrestin affinity and activation and global conformation
Cellular functions of arrestins are determined in part by the pattern of phosphorylation on the G protein-coupled receptors (GPCRs) to which arrestins bind. Despite high-resolution structural data of arrestins bound to phosphorylated receptor C-termini, the functional role of each phosphorylation site remains obscure. Here, we employ a library of synthetic phosphopeptide analogues of the GPCR rhodopsin C-terminus and determine the ability of these peptides to bind and activate arrestins using a variety of biochemical and biophysical methods. We further characterize how these peptides modulate the conformation of arrestin-1 by nuclear magnetic resonance (NMR). Our results indicate different functional classes of phosphorylation sites: ‘key sites’ required for arrestin binding and activation, an ‘inhibitory site’ that abrogates arrestin binding, and ‘modulator sites’ that influence the global conformation of arrestin. These functional motifs allow a better understanding of how different GPCR phosphorylation patterns might control how arrestin functions in the cell. The cellular functions of arrestins are determined in part by the pattern of phosphorylation on the G protein-coupled receptors (GPCRs) to which arrestins bind. Here, authors use a library of synthetic phosphopeptide analogues of the GPCR rhodopsin C-terminus and determine the ability of these peptides to bind and activate arrestins using a variety of biochemical and biophysical methods.
Lack of beta-arrestin signaling in the absence of active G proteins
G protein-independent, arrestin-dependent signaling is a paradigm that broadens the signaling scope of G protein-coupled receptors (GPCRs) beyond G proteins for numerous biological processes. However, arrestin signaling in the collective absence of functional G proteins has never been demonstrated. Here we achieve a state of “zero functional G” at the cellular level using HEK293 cells depleted by CRISPR/Cas9 technology of the Gs/q/12 families of Gα proteins, along with pertussis toxin-mediated inactivation of Gi/o. Together with HEK293 cells lacking β-arrestins (“zero arrestin”), we systematically dissect G protein- from arrestin-driven signaling outcomes for a broad set of GPCRs. We use biochemical, biophysical, label-free whole-cell biosensing and ERK phosphorylation to identify four salient features for all receptors at “zero functional G”: arrestin recruitment and internalization, but—unexpectedly—complete failure to activate ERK and whole-cell responses. These findings change our understanding of how GPCRs function and in particular of how they activate ERK1/2. Arrestins terminate signaling from GPCRs, but several lines of evidence suggest that they are also able to transduce signals independently of G proteins. Here, the authors systematically ablate G proteins in cell lines, and show that arrestins are unable to act as genuine signal initiators.
β-Arrestin mediates the Frank–Starling mechanism of cardiac contractility
The Frank–Starling law of the heart is a physiological phenomenon that describes an intrinsic property of heart muscle in which increased cardiac filling leads to enhanced cardiac contractility. Identified more than a century ago, the Frank–Starling relationship is currently known to involve length-dependent enhancement of cardiac myofilament Ca2+ sensitivity. However, the upstream molecular events that link cellular stretch to the length-dependent myofilament Ca2+ sensitivity are poorly understood. Because the angiotensin II type 1 receptor (AT1R) and the multifunctional transducer protein β-arrestin have been shown to mediate mechanosensitive cellular signaling, we tested the hypothesis that these two proteins are involved in the Frank–Starling mechanism of the heart. Using invasive hemodynamics, we found that mice lacking β-arrestin 1, β-arrestin 2, or AT1R were unable to generate a Frank–Starling force in response to changes in cardiac volume. Although wild-type mice pretreated with the conventional AT1R blocker losartan were unable to enhance cardiac contractility with volume loading, treatment with a β-arrestin–biased AT1R ligand to selectively activate β-arrestin signaling preserved the Frank–Starling relationship. Importantly, in skinned muscle fiber preparations, we found markedly impaired length-dependent myofilament Ca2+ sensitivity in β-arrestin 1, β-arrestin 2, and AT1R knockout mice. Our data reveal β-arrestin 1, β-arrestin 2, and AT1R as key regulatory molecules in the Frank–Starling mechanism, which potentially can be targeted therapeutically with β-arrestin–biased AT1R ligands.
Regulation of cardiac fibroblast-mediated maladaptive ventricular remodeling by β-arrestins
Cardiac fibroblasts (CF) play a critical role in post-infarction remodeling which can ultimately lead to pathological fibrosis and heart failure. Recent evidence demonstrates that remote (non-infarct) territory fibrosis is a major mechanism for ventricular dysfunction and arrhythmogenesis. β-arrestins are important signaling molecules involved in β-adrenergic receptor (β-AR) desensitization and can also mediate signaling in a G protein independent fashion. Recent work has provided evidence that β-arrestin signaling in the heart may be beneficial, however, these studies have primarily focused on cardiac myocytes and their role in adult CF biology has not been well studied. In this study, we show that β-arrestins can regulate CF biology and contribute to pathological fibrosis. Adult male rats underwent LAD ligation to induce infarction and were studied by echocardiography. There was a significant decline in LV function at 2-12 weeks post-MI with increased infarct and remote territory fibrosis by histology consistent with maladaptive remodeling. Collagen synthesis was upregulated 2.9-fold in CF isolated at 8 and 12 weeks post-MI and β-arrestin expression was significantly increased. β-adrenergic signaling was uncoupled in the post-MI CF and β-agonist-mediated inhibition of collagen synthesis was lost. Knockdown of β-arrestin1 or 2 in the post-MI CF inhibited transformation to myofibroblasts as well as basal and TGF-β-stimulated collagen synthesis. These data suggest that β-arrestins can regulate CF biology and that targeted inhibition of these signaling molecules may represent a novel approach to prevent post-infarction pathological fibrosis and the transition to HF.
Structural studies of phosphorylation-dependent interactions between the V2R receptor and arrestin-2
Arrestins recognize different receptor phosphorylation patterns and convert this information to selective arrestin functions to expand the functional diversity of the G protein-coupled receptor (GPCR) superfamilies. However, the principles governing arrestin-phospho-receptor interactions, as well as the contribution of each single phospho-interaction to selective arrestin structural and functional states, are undefined. Here, we determined the crystal structures of arrestin2 in complex with four different phosphopeptides derived from the vasopressin receptor-2 (V2R) C-tail. A comparison of these four crystal structures with previously solved Arrestin2 structures demonstrated that a single phospho-interaction change results in measurable conformational changes at remote sites in the complex. This conformational bias introduced by specific phosphorylation patterns was further inspected by FRET and 1 H NMR spectrum analysis facilitated via genetic code expansion. Moreover, an interdependent phospho-binding mechanism of phospho-receptor-arrestin interactions between different phospho-interaction sites was unexpectedly revealed. Taken together, our results provide evidence showing that phospho-interaction changes at different arrestin sites can elicit changes in affinity and structural states at remote sites, which correlate with selective arrestin functions. The interaction between a GPCR, such as the vasopressin receptor-2 (V2R), and arrestin depends on the receptors’ phosphorylation pattern. Here authors use FRET and NMR to analyze the phosphorylation patterns of the V2R-arrestin complex and show that phospho-interactions are the key determinants of selective arrestin conformational states and correlated functions.
GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation
G protein-coupled receptors (GPCRs) activate G proteins and undergo a complex regulation by interaction with GPCR kinases (GRKs) and the formation of receptor–arrestin complexes. However, the impact of individual GRKs on arrestin binding is not clear. We report the creation of eleven combinatorial HEK293 knockout cell clones lacking GRK2/3/5/6, including single, double, triple and the quadruple GRK knockout. Analysis of β-arrestin1/2 interactions for twelve GPCRs in our GRK knockout cells enables the differentiation of two main receptor subsets: GRK2/3-regulated and GRK2/3/5/6-regulated receptors. Furthermore, we identify GPCRs that interact with β-arrestins via the overexpression of specific GRKs even in the absence of agonists. Finally, using GRK knockout cells, PKC inhibitors and β-arrestin mutants, we present evidence for differential receptor–β-arrestin1/2 complex configurations mediated by selective engagement of kinases. We anticipate our GRK knockout platform to facilitate the elucidation of previously unappreciated details of GRK-specific GPCR regulation and β-arrestin complex formation. GPCR kinases (GRKs) regulate GPCR interactions and thus functions. Here, the authors report a comprehensive panel of GRK knockout cells, used to assess the GRK-specific β-arrestin recruitment. Selective engagement of GRKs induces distinct GPCR–β-arrestin complexes.
Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide
The crystal structure of β-arrestin-1 in complex with a fully phosphorylated 29-amino-acid carboxy-terminal peptide derived from the V2 vasopressin receptor is reported; the structure of the complex shows striking conformational differences in β-arrestin-1 when compared with its inactive conformation. Two views of active arrestin proteins Arrestin proteins are negative regulators of G-protein-coupled receptor (GPCR) function and also act as G-protein-independent signalling proteins. Before forming a high-affinity complex, arrestins must be activated, and two papers in this issue of Nature focus on the interaction between GCPRs and activated arrestin at the atomic scale. Yong Ju Kim et al . mimicked the initial activation step by truncating the carboxy terminus of arrestin to produce the naturally occurring splice variant called p44 and determined its crystal structure. This structure provides insight into the role of naturally occurring truncated arrestins in the visual system. Arun Shukla et al . present the structure of non-visual β-arrestin-1 in complex with an antibody fragment (Fab30) and a fully phosphorylated 29-amino-acid C-terminal peptide derived from a GPCR, the arginine vasopressin type 2 receptor. Taken together, these two studies reveal striking conformational changes associated with arrestin activation. The functions of G-protein-coupled receptors (GPCRs) are primarily mediated and modulated by three families of proteins: the heterotrimeric G proteins, the G-protein-coupled receptor kinases (GRKs) and the arrestins 1 . G proteins mediate activation of second-messenger-generating enzymes and other effectors, GRKs phosphorylate activated receptors 2 , and arrestins subsequently bind phosphorylated receptors and cause receptor desensitization 3 . Arrestins activated by interaction with phosphorylated receptors can also mediate G-protein-independent signalling by serving as adaptors to link receptors to numerous signalling pathways 4 . Despite their central role in regulation and signalling of GPCRs, a structural understanding of β-arrestin activation and interaction with GPCRs is still lacking. Here we report the crystal structure of β-arrestin-1 (also called arrestin-2) in complex with a fully phosphorylated 29-amino-acid carboxy-terminal peptide derived from the human V2 vasopressin receptor (V2Rpp). This peptide has previously been shown to functionally and conformationally activate β-arrestin-1 (ref. 5 ). To capture this active conformation, we used a conformationally selective synthetic antibody fragment (Fab30) that recognizes the phosphopeptide-activated state of β-arrestin-1. The structure of the β-arrestin-1–V2Rpp–Fab30 complex shows marked conformational differences in β-arrestin-1 compared to its inactive conformation. These include rotation of the amino- and carboxy-terminal domains relative to each other, and a major reorientation of the ‘lariat loop’ implicated in maintaining the inactive state of β-arrestin-1. These results reveal, at high resolution, a receptor-interacting interface on β-arrestin, and they indicate a potentially general molecular mechanism for activation of these multifunctional signalling and regulatory proteins.
PD 102807 Induces M3 mAChR-Dependent GRK-/Arrestin-Biased Signaling in Airway Smooth Muscle Cells
Abstract G protein–coupled receptors (GPCRs) not only are turned on or off to control canonical G protein signaling but also may be fine-tuned to promote qualitative/biased signaling. Qualitative signaling by M3 muscarinic acetylcholine receptors (mAChRs) has been proposed, but its impact on physiologic systems remains unclear, and currently no biased M3 mAChR ligands have been described. Herein, we identify PD 102807 as a biased M3 ligand and delineate its signaling and function in human airway smooth muscle (ASM) cells. PD 102807 induced M3-mediated β-arrestin recruitment but not calcium mobilization. PD 102807 inhibited methacholine (MCh)-induced calcium mobilization in (M3-expressing) ASM cells. PD 102807 induced phosphorylation of AMP-activated protein kinase (AMPK) and the downstream effector acetyl–coenzyme A carboxylase (ACC). PD 102807– induced phosphorylated (p)-AMPK levels were greatly reduced in ASM cells with minimal M3 expression and were not inhibited by the Gq inhibitor YM-254890. Induction of p-AMPK and p-ACC was inhibited by β-arrestin 1 or GRK2/3 knockdown. Similarly, MCh induced phosphorylation of AMPK/ACC, but these effects were Gq dependent and unaffected by GRK2/3 knockdown. Consistent with the known ability of AMPK to inhibit transforming growth factor β (TGF-β)–mediated functions, PD 102807 inhibited TGF-β–induced SMAD-Luc activity, sm-α-actin expression, actin stress fiber formation, and ASM cell hypercontractility. These findings reveal that PD 102807 is a biased M3 ligand that inhibits M3-transduced Gq signaling but promotes Gq protein-independent, GRK-/arrestin-dependent, M3-mediated AMPK signaling, which in turn regulates ASM phenotype and contractile function. Consequently, biased M3 ligands hold significant promise as therapeutic agents capable of exploiting the pleiotropic nature of M3 signaling.
Structure of the neurotensin receptor 1 in complex with β-arrestin 1
Arrestin proteins bind to active, phosphorylated G-protein-coupled receptors (GPCRs), thereby preventing G-protein coupling, triggering receptor internalization and affecting various downstream signalling pathways 1 , 2 . Although there is a wealth of structural information detailing the interactions between GPCRs and G proteins, less is known about how arrestins engage GPCRs. Here we report a cryo-electron microscopy structure of full-length human neurotensin receptor 1 (NTSR1) in complex with truncated human β-arrestin 1 (βarr1(ΔCT)). We find that phosphorylation of NTSR1 is critical for the formation of a stable complex with βarr1(ΔCT), and identify phosphorylated sites in both the third intracellular loop and the C terminus that may promote this interaction. In addition, we observe a phosphatidylinositol-4,5-bisphosphate molecule forming a bridge between the membrane side of NTSR1 transmembrane segments 1 and 4 and the C-lobe of arrestin. Compared with a structure of a rhodopsin–arrestin-1 complex, in our structure arrestin is rotated by approximately 85° relative to the receptor. These findings highlight both conserved aspects and plasticity among arrestin–receptor interactions. A cryo-electron microscopy structure of the neurotensin receptor 1 in complex with β-arrestin 1 is reported.
β-Arrestin1 and β-Arrestin2 Are Required to Support the Activity of the CXCL12/HMGB1 Heterocomplex on CXCR4
The chemokine receptor CXCR4 plays a fundamental role in homeostasis and pathology by orchestrating recruitment and positioning of immune cells, under the guidance of a CXCL12 gradient. The ability of chemokines to form heterocomplexes, enhancing their function, represents an additional level of regulation on their cognate receptors. In particular, the multi-faceted activity of the heterocomplex formed between CXCL12 and the alarmin HMGB1 is emerging as an unexpected player able to modulate a variety of cell responses, spanning from tissue regeneration to chronic inflammation. Nowadays, little is known on the selective signaling pathways activated when CXCR4 is triggered by the CXCL12/HMGB1 heterocomplex. In the present work, we demonstrate that this heterocomplex acts as a CXCR4 balanced agonist, activating both G protein and β-arrestins-mediated signaling pathways to sustain chemotaxis. We generated β-arrestins knock out HeLa cells by CRISPR/Cas9 technology and show that the CXCL12/HMGB1 heterocomplex-mediated actin polymerization is primarily β-arrestin1 dependent, while chemotaxis requires both β-arrestin1 and β-arrestin2. Triggering of CXCR4 with the CXCL12/HMGB1 heterocomplex leads to an unexpected receptor retention on the cell surface, which depends on β-arrestin2. In conclusion, the CXCL12/HMGB1 heterocomplex engages the β-arrestin proteins differently from CXCL12, promoting a prompt availability of CXCR4 on the cell surface, and enhancing directional cell migration. These data unveil the signaling induced by the CXCL12/HMGB1 heterocomplex in view of identifying biased CXCR4 antagonists or agonists targeting the variety of functions it exerts.