Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
105 result(s) for "Arrhenatherum elatius"
Sort by:
Amendment Application in a Multicontaminated Mine Soil: Effects on Trace Element Mobility
Several amendments were tested for their effectiveness in aiding plant growth and immobilising contaminants in pots containing soil from an arsenopyrite mine contaminated with arsenic and heavy metals and planted with two native grass species, Arrhenatherum elatius subsp. Bulbosum and Festuca curvifolia. Trace element solubility in pore water was monitored using Rhizon samplers for 5 weeks. Results showed that amendments containing ferrous sulphate and ferrous sulphate combined with recycled de-inking paper sludge limited arsenic mobilisation and increased metal solubility. However, ferrous sulphate in combination with calcium carbonate was effective in reducing arsenic and metal solubilisation. Plant biomass of A. elatius was a sensitive indicator of the comparative efficiency of the amendments, although metal(loid) concentration in pore water did not correlate with plant uptake.
Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration
1. Ecological restoration of grasslands is increasingly based on regional seeds derived from predefined seed transfer zones. However, the degree and spatial pattern of genetic differentiation among provenances of different seed transfer zones is largely unknown. 2. We assessed the genetic differentiation among eight out of 22 German seed transfer zones for seven common grassland species (Arrhenatherum elatius, Centaurea jacea, Daucus carota, Galium album, Hypochaeris radicata, Knautia arvensis and Lychnis flos-cuculi) using AFLP markers. We analysed genetic population structure with AMOVA and Bayesian cluster analysis and tested for isolation by distance and isolation by environment. 3. In all of the investigated species, almost all pairs of provenances were genetically differentiated. Bayesian cluster analysis revealed species-specific numbers and spatial patterns of gene pools, with between two (Arrhenatherum) and eight clusters (Lychnis). Most investigated seed transfer zones represented a unique gene pool in the majority of the species. 4. We found isolation by distance in four species, isolation by environment, driven by climatic seasonality, in three species, and a lack of both in three species. Thus, the observed genetic differentiation appears to be caused by both neutral and adaptive processes. 5. Synthesis and applications. Our study shows that grassland plants are indeed strongly genetically differentiated across Germany supporting the strategy of seed transfer zones for ecological restoration. Although the predefined seed transfer zones are unlikely to match the exact genetic structure of many species, they serve their purpose by capturing a substantial amount of intraspecific genetic variation across species.
Experimental evidence that the perennial grass persistence pathway is linked to plant growth strategy
Grass species can be classified into different functional types based on their growth strategies, and contrasting persistence strategies are observed in different grass species. Excluding seedling recruitments, changes in populations of grasses are basically a trade-off between natality and mortality of tillers. We hypothesised that the persistence pathway of perennial grasses is linked to their growth strategy, regardless whether they are growing as monoculture or as a mixture. Species with contrasting growth strategies (Arrhenatherum elatius L., Dactylis glomerata L., and Festuca arundinacea Schreb.) were cultivated as monocultures and as a mixture and their tiller natality and mortality were evaluated for two years after swards establishment. All pastures maintained their population size during the experimental period, although decreases in tiller densities occurred during the warmer season. Arrhenatherum elatius had the highest tiller mortality and natality whereas the F. arundinacea had the lowest ones. Arrhenatherum elatius had many tillers appearing in all seasons but their tillers were short-lived. Conversely, F. arundinacea and D. glomerata developed numerous tillers during autumn and winter and their tillers survived, on average, almost six and three times longer than those of A. elatius, respectively. There were no differences in tillering dynamics among populations grown in monocultures or in the mixture. Regardless of whether they were cultivated in monocultures or as a mixture, the persistence pathway of perennial grasses is linked with their growth strategies with exploitative species presenting a high tiller turnover throughout the year whereas the persistence of more conservative species is based on a high tiller survival.
Crop Wild Relatives (CWRs) Threatened and Endemic to Italy: Urgent Actions for Protection and Use
An updated overview of the 29 threatened crop wild relatives (CWRs) endemic to Italy is presented, namely: Arrhenatherum elatius subsp. nebrodense, Barbarea rupicola, Brassica baldensis, Brassica glabrescens, Brassica macrocarpa, Brassica rupestris subsp. hispida, Brassica rupestris subsp. rupestris, Brassica tardarae, Brassicatrichocarpa, Brassica tyrrhena, Brassica villosa subsp. bivonana, Brassica villosa subsp. brevisiliqua, Brassica villosa subsp. drepanensis, Brassica villosa subsp. tineoi, Brassica villosa subsp. villosa, Daucus broteroi, Daucus carota subsp. rupestris, Daucus nebrodensis, Diplotaxis scaposa, Festuca centroapenninica, Lathyrus apenninus, Lathyrus odoratus, Malus crescimannoi, Phalaris arundinacea subsp. rotgesii, Vicia brulloi, Vicia consentina, Vicia giacominiana, Vicia ochroleuca subsp. ochroleuca, Vicia tenuifolia subsp. elegans. Data concerning geographical distribution, ecology (including plant communities and habitats of the Directive 92/43/EEC), genetics (chromosome number, breeding system, and/or the existence of gene pools), threat status at the national and international level (Red Lists), key plant properties, and in situ and ex situ conservation were analyzed and shown. At present, most of the listed endemic CWRs, 23 out of 29, have no gene pool at all, so they are CWRs only according to the taxon group and not according to the gene pool concept. In addition, there is a serious lack of data on the ex situ conservation in gene banks, with 16 species identified as high priority (HP) while 22 taxa have high priority (A) for in situ conservation. With the aim of their protection, conservation, and valorization, specific and urgent actions are recommended.
Can a Mixture of Perennial Grasses with Contrasting Growth Strategies Compose Productive and Stable Swards?
Core Ideas Mixing grass forage species can increase forage yield and stability. Overyielding was more influenced by increasing leaf biomass rather than stem biomass. Dominant grasses with contrasting growth strategies can compose productive and stable pastures. Mixtures composed of species with different growth strategies (e.g., exploitative and conservative), which have different abilities for resource capture and use, are thought to improve grassland ecosystem services. However, plant species that compete better for limiting resources can become dominant. This study examined whether potential dominant perennial grasses with different growth strategies can compose productive and stable forage mixtures under low competition for resources (nutrients and light). Arrhenatherum elatius L. (exploitative), Festuca arundinacea Schreb. (conservative), and Dactylis glomerata L. (moderately exploitative) were sowed as monocultures and as a three‐species mixture. Pastures were fertilized to maintain high soil fertility levels and mowed by half when their canopies reached 20 cm in height (95% of light interception in the vegetative stage) allowing for over 2 yr of data collection. The proportion of each species in the mixture remained unaltered throughout the experimental period. Transgressive overyielding was not observed; however, the mixture presented a similar yield to the most productive monocultures (10,200 kg DM ha−1 yr−1), although D. glomerata, which presented the lowest yield in monoculture (6400 kg DM ha−1 yr−1), comprised 68.1% of post‐cutting biomass in the mixture. Arrhenatherum elatius and F. arundinacea populations presented less yield variance in monoculture, but higher yield stability was observed in the mixture. Overyielding in the three studied species was strongly affected by leaf production. Mixtures composed of perennial grasses with different growth strategies when grown in nutrient‐rich soil and under conditions of low light competition can compose productive and stable swards, while maximizing leaf production.
Complementarity among four highly productive grassland species depends on resource availability
Positive species richness–productivity relationships are common in biodiversity experiments, but how resource availability modifies biodiversity effects in grass–legume mixtures composed of highly productive species is yet to be explicitly tested. We addressed this question by choosing two grasses (Arrhenatherum elatius and Dactylis glomerata) and two legumes (Medicago × varia and Onobrychis viciifolia) which are highly productive in monocultures and dominant in mixtures (the Jena Experiment). We established monocultures, all possible two- and three-species mixtures, and the four-species mixture under three different resource supply conditions (control, fertilization, and shading). Compared to the control, community biomass production decreased under shading (−56 %) and increased under fertilization (+12 %). Net diversity effects (i.e., mixture minus mean monoculture biomass) were positive in the control and under shading (on average +15 and +72 %, respectively) and negative under fertilization (−10 %). Positive complementarity effects in the control suggested resource partitioning and facilitation of growth through symbiotic N₂ fixation by legumes. Positive complementarity effects under shading indicated that resource partitioning is also possible when growth is carbon-limited. Negative complementarity effects under fertilization suggested that external nutrient supply depressed facilitative grass–legume interactions due to increased competition for light. Selection effects, which quantify the dominance of species with particularly high monoculture biomasses in the mixture, were generally small compared to complementarity effects, and indicated that these species had comparable competitive strengths in the mixture. Our study shows that resource availability has a strong impact on the occurrence of positive diversity effects among tall and highly productive grass and legume species.
Interactions between tall oatgrass invasion and soil nitrogen cycling
Increases in nitrogen (N) inputs to the biosphere can exacerbate the introduction and spread of invasive non-native plant species. Often, with elevated soil N levels, invasive plants establish and further enrich soil N pools, changing overall ecosystem function. This study examined the relationship between soil N cycling and an increasingly prevalent, invasive plant species, tall oatgrass (Arrhenatherum elatius subsp. elatius), in foothills ecosystems between the Colorado Rocky Mountains and the Denver-Boulder Metropolitan area—similar to many Western US grasslands and woodlands. It focused on investigating differences in soil N transformations, inorganic N pools, and vegetation characteristics across invaded and uninvaded plots at three sites in two seasons (summer and autumn). There was a statistically significant effect of invasion on rates of net N mineralization, but it was dependent on site and season (p = 0.046). Site had a statistically significant effect on soil moisture and aboveground biomass C:N (p < 0.04). The interactions of invasion x site were statistically significant for ammonium pools (p < 0.03). These findings suggest that A. elatius invasion can be associated with accelerated N cycling, but that the nature of the relationship differs by location and season in the foothills. More broadly, this study contributes to determining how the N cycle is shifting in grassland ecosystems subject to increasing pressures from anthropogenic change.
Eco-evolutionary dynamics modulate plant responses to global change depending on plant diversity and species identity
Global change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to diversity loss and how this affects their responses to global change. Here, we performed a common garden experiment testing whether plant responses to global change are influenced by their selection history and the conditioning history of soil at different plant diversity levels. Using seeds of four grass species and soil samples from a 14-year-old biodiversity experiment, we grew the offspring of the plants either in their own soil or in soil of a different community, and exposed them either to drought, increased nitrogen input, or a combination of both. Under nitrogen addition, offspring of plants selected at high diversity produced more biomass than those selected at low diversity, while drought neutralized differences in biomass production. Moreover, under the influence of global change drivers, soil history, and to a lesser extent plant history, had species-specific effects on trait expression. Our results show that plant diversity modulates plant-soil interactions and growth strategies of plants, which in turn affects plant eco-evolutionary pathways. How this change affects species' response to global change and whether this can cause a feedback loop should be investigated in more detail in future studies. Over the last hundred years, human activities including burning of fossil fuels, clearing of forests, and fertilizer use have caused environmental changes that have resulted in many species of plants, animals and other forms of life becoming extinct. Loss of plant species can change the local environment by, for example, altering the availability of nutrients and local communities of microbes in the soil. This may, in turn, cause remaining plant species to develop differently: they may take up fewer resources or become more prone to pathogens, both of which may alter their physical appearance. However, little is known about whether this happens and, if so, how rapidly such changes occur. Since 2002, researchers in Germany have been running a long-term project known as the Jena Experiment to study how plants behave when they grow in communities with different numbers of other plant species. For the experiment, various species of grass and other plants commonly found in grasslands were grown together in different combinations. Some plots contained many species (referred to as “high diversity”) and others contained only a few (“low diversity”). Here, Dietrich et al. collected seeds from four grasses grown for 12 years in Jena Experiment plots with two or six plant species. The seeds were then transferred to pots and grown in a greenhouse using soil either from the plot where the seeds originated or from another plot with a different diversity level. To simulate human-made changes in the environment, the team added nitrogen fertilizer or decreased how much they watered some of the plants. The greenhouse experiment showed that after receiving nitrogen fertilizer, the seeds from the high diversity Jena Experiment plots grew into larger plants than the seeds from the low diversity plots. But there was no difference in size when the plants were watered less. Moreover, both fertilizer and watering treatment had different effects on the plants’ physical appearance (root and leaf architecture) depending on the soil in which they were growing in. The findings of Dietrich et al. suggest that plants may respond differently to changes in their environment based on their origins and the soil they are growing in. This study provides the first indication that species loss could accelerate a further loss of species due to changes in how the plants develop and the communities of organisms living in the soil.
Interactions of plant growth responses to spring freezing and summer drought
Premise of the Study Freezing and drought both result in cellular dehydration, and similar physiological responses to these stressors may result in cross acclimation, whereby prior freezing exposure increases subsequent drought tolerance. We examined how spring freezing influences summer drought tolerance for a range of herbaceous old field species: 6 graminoids (Agrostis stolonifera, Arrhenatherum elatius, Bromus inermis, Festuca rubra, Lolium perenne, Poa compressa) and 2 forbs (Plantago lanceolata, Securigera varia), with the goal of examining the generality of cross acclimation responses. Methods We exposed the plants to –5°C in the spring and to a 3‐week summer drought, and harvested the plants after a 3‐week watering/recovery period. We also measured leaf soluble proteins and sugars to explore the potential mechanisms before and during drought stress. Key Results For Agrostis stolonifera, Bromus inermis, Lolium perenne, Plantago lanceolata, and Poa compressa there was evidence of cross acclimation based on aboveground or belowground biomass, with a reduction in the severity of the drought effect for the plants previously exposed to freezing. Freezing and drought effects were additive for Arrhenatherum elatius, and for the remaining two species the test of the freezing‐drought interaction was inconclusive, because significant drought and freezing effects did not co‐occur. When present, freezing‐drought interactions were not correlated with changes in leaf soluble protein or sugars. Conclusions Our results reveal that the phenomenon of freezing‐drought cross acclimation appears to be common in herbaceous species, and variation among species in cross acclimation indicates that multiple stresses could alter relative species abundances in plant communities.
Ecotypes of European grass species respond differently to warming and extreme drought
1. Climate extremes are expected to increase in frequency and magnitude as a consequence of global warming. 2. Managed permanent grasslands cover a large surface in Europe and contribute substantially to agricultural production. These managed plant communities are dominated by perennial clonal species. Their capacity to adapt to rapidly changing environmental conditions may be limited. 3. We hypothesize that those plant populations that have already been exposed to conditions that are expected to occur due to future climate change, particularly conditions that would be 'extreme' in the target area, are able to cope better with these conditions. 4. For a common-garden experiment we selected ecotypes (provenances as supported by accessions in seed banks) of important European grass species: Arrhenatherum elatius, Festuca pratensis, Holcus lanatus and Alopecurus pratensis. Southern target locations of ecotypes (populations) were identified based on climate model projections for the local site in Northern Bavaria, Germany. 5. In a controlled experiment, the plants were exposed to warming and extreme drought. Drought conditions(16—19) days, depending on the species) were imposed starting from the end of May in combination with and without an increase in the average temperature from May to September 2009 (+ 1.5 K compared with control; + 2.5 K compared with ambient conditions outside of the experimental units). 6. Ecotypes and drought manipulation had significant impacts on biomass production and tissue die-back. Significant interactions between ecotype and drought indicated a different drought tolerance of the ecotypes in some cases. The warming treatment yielded a less significant response. The local ecotype generally did not perform significantly worse than the presumably better-adapted southern ecotypes. 7. Synthesis. The selection of ecotypes that are adapted to more extreme climatic conditions could be an option for maintaining future ecosystem functioning in temperate managed grasslands, as was indicated by the clear differences between ecotypes in our experiment. Based on our data, however, performance cannot be predicted from climatic origin. Therefore, we recommend enhancing the genetic variability within populations of species in general.