Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
898
result(s) for
"Artemisinins - chemistry"
Sort by:
Safety and efficacy of artesunate-amodiaquine combined with either methylene blue or primaquine in children with falciparum malaria in Burkina Faso: A randomized controlled trial
by
Lu, Guangyu
,
Mendes Jorge, Margarida
,
Nebie, Eric
in
Amodiaquine
,
Amodiaquine - administration & dosage
,
Analysis
2019
Artemisinin resistance is threatening global efforts for malaria control and elimination. Primaquine (PQ) and methylene blue (MB) are gametocytocidal drugs that can be combined with artemisinin-based combination therapy (ACT) to reduce malaria transmission, including resistant strains. Children (6-59 months) with uncomplicated falciparum malaria in Burkina Faso were treated with artesunate-amodiaquine (AS-AQ) and randomized to MB (15 mg/kg/day for 3 days) or PQ (0.25 mg/kg at day 2) with the aim to show non-inferiority of the MB regimen with regard to haematological recovery at day 7 (primary endpoint). MB-AS-AQ could not be shown to be non-inferior to PQ-AS-AQ (mean Hb difference between treatment groups on day 7 was -0.352, 95% CI -0.832-0.128, p = 0.0767), however, haemoglobin recovery following treatment was alike in the two study arms (day 7: mean 0.2±1.4 g/dl vs. 0.5±0.9 g/dl, p = 0.446). Occurrence of adverse events was similar in both groups, except for vomiting, which was more frequent in the MB than in the PQ arm (20/50 vs 7/50, p = 0.003). Adequate clinical and parasitological response was above 95% in both groups, but significantly more asexual parasites were cleared in the MB arm compared to the PQ arm already on day 1 (48/50, 96%, vs 40/50, 80%, p = 0.014). Moreover, P. falciparum gametocyte prevalence and density were lower in the MB arm than in the PQ arm, which reached statistical significance on day 2 (prevalence: 2/50, 4%, vs 15/49, 31%, p<0.001; density: 9.6 vs 41.1/μl, p = 0.024). However, it should be considered that PQ was given only on day 2. MB-ACT appears to be an interesting alternative to PQ-ACT for the treatment of falciparum malaria. While there is a need to further improve MB formulations, MB-ACT may already be considered useful to reduce falciparum malaria transmission intensity, to increase treatment efficacy, and to reduce the risk for resistance development and spread. Trial registration: ClinicalTrials.gov NCT02851108.
Journal Article
Factors contributing to anaemia after uncomplicated falciparum malaria in under five year-old Nigerian children ten years following adoption of artemisinin-based combination therapies as first-line antimalarials
by
Oyibo, Wellington A.
,
Wammanda, Robinson
,
Mokuolu, Olugbenga
in
Adoption
,
Amodiaquine - therapeutic use
,
Analysis
2017
Background
Artemisinin-based combination therapies (ACTs) have remained efficacious treatments of acute falciparum malaria in many endemic areas but there is little evaluation of factors contributing to the anaemia of acute falciparum malaria following long term adoption of ACTs as first-line antimalarials in African children.
Methods
Malarious <5 year-olds randomized to artemether-lumefantrine, artesunate-amodiaquine or dihydroartemisinin-piperaquine treatments were followed up clinically for 6 weeks. Anaemia was defined as haematocrit <30%; Malaria-attributable fall in haematocrit (MAFH) as the difference between haematocrit 28–42 days post- and pre-treatment; Total MAFH (TMAFH) as the difference between days 28–42 haematocrit and the lowest haematocrit recorded in the first week post-treatment initiation; Drug-attributable fall in haematocrit (DAFH) as the difference between MAFH and TMAFH; Early appearing anaemia (EAA) as haematocrit <30% occurring within 1 week in children with normal haematocrit pre-treatment. Predictors of anaemia pre-treatment, EAA, MAFH or DAFH >4% were evaluated by stepwise multiple logistic regression models. Survival analysis and kinetics of DAFH were evaluated by Kaplan-Meier estimator and non-compartment model, respectively.
Results
Pre-treatment, 355 of 959 children were anaemic. Duration of illness >2 days and parasitaemia ≤10,000 μL
−1
were independent predictors of anaemia pre-treatment. EAA occurred in 301 of 604 children. Predictors of EAA were age ≤ 15 months, history of fever pre-treatment and enrolment haematocrit ≤35%. The probabilities of progression from normal haematocrit to EAA were similar for all treatments. MAFH >4% occurred in 446 of 694 children; its predictors were anaemia pre-treatment, enrolment parasitaemia ≤50,000 μL
−1
, parasitaemia one day post-treatment initiation and gametocytaemia. DAFH >4% occurred in 334 of 719 children; its predictors were history of fever pre-and fever 1 day post-treatment initiation, haematocrit ≥37%, and parasitaemia >100,000 μL
−1
. In 432 children, declines in DAFH deficits were monoexponential with overall estimated half-time of 2.2d (95% CI 1.9–2.6). Area under curve of deficits in DAFH versus time and estimated half-time were significantly higher in non-anaemic children indicating greater loss of haematocrit in these children.
Conclusion
After ten years of adoption of ACTs, anaemia is common pre-and early post-treatment, falls in haematocrit attributable to a single infection is high, and DAFH >4% is common and significantly lower in anaemic compared to non-anaemic Nigerian children.
Trial registration
Pan African Clinical Trial Registry (PACTR) [
PACTR201709002064150, 1 March 2017
].
Journal Article
High-level semi-synthetic production of the potent antimalarial artemisinin
2013
NRC publication: Yes
Journal Article
Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis
2020
The antimalarial drug artemisinin and its derivatives have been explored as potential anticancer agents, but their underlying mechanisms are controversial. In this study, we found that artemisinin compounds can sensitize cancer cells to ferroptosis, a new form of programmed cell death driven by iron-dependent lipid peroxidation. Mechanistically, dihydroartemisinin (DAT) can induce lysosomal degradation of ferritin in an autophagy-independent manner, increasing the cellular free iron level and causing cells to become more sensitive to ferroptosis. Further, by associating with cellular free iron and thus stimulating the binding of iron-regulatory proteins (IRPs) with mRNA molecules containing iron-responsive element (IRE) sequences, DAT impinges on IRP/IRE-controlled iron homeostasis to further increase cellular free iron. Importantly, in both in vitro and a mouse xenograft model in which ferroptosis was triggered in cancer cells by the inducible knockout of GPX4, we found that DAT can augment GPX4 inhibition-induced ferroptosis in a cohort of cancer cells that are otherwise highly resistant to ferroptosis. Collectively, artemisinin compounds can sensitize cells to ferroptosis by regulating cellular iron homeostasis. Our findings can be exploited clinically to enhance the effect of future ferroptosis-inducing cancer therapies.
Journal Article
Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7
by
Wong, Michael H. L.
,
Biagini, Giancarlo A.
,
Barton, Victoria
in
Antimalarials - chemical synthesis
,
Antimalarials - chemistry
,
Antimalarials - pharmacology
2016
The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography–MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs.
Journal Article
Artemisinin and Its Derivatives as Potential Anticancer Agents
by
Wen, Luan
,
Chan, Ben Chung-Lap
,
Wong, Chun-Kwok
in
Animals
,
anticancer activity
,
Antimalarials - chemistry
2024
Artemisinin is a natural sesquiterpene lactone obtained from the traditional Chinese medicinal herb Artemisia annua L. (qinghao). Artemisinin and its derivatives share an unusual endoperoxide bridge and are extensively used for malaria treatment worldwide. In addition to antimalarial activities, artemisinin and its derivatives have been reported to exhibit promising anticancer effects in recent decades. In this review, we focused on the research progress of artemisinin and its derivatives with potential anticancer activities. The pharmacological effects, potential mechanisms, and clinical trials in cancer therapy of artemisinin and its derivatives were discussed. This review may facilitate the future exploration of artemisinin and its derivatives as effective anticancer agents.
Journal Article
Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum
2015
The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in
Plasmodium falciparum
. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite’s haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing.
The mechanism of action of artemisinin, an antimalarial drug, is not well understood. Here, the authors use a labelled artemisinin analogue to show that the drug is mainly activated by haem and then binds covalently to over 120 proteins in the malaria parasite, affecting many of its cellular processes.
Journal Article
Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin
by
Westfall, Patrick J
,
Horning, Tizita
,
Paddon, Chris J
in
Acid production
,
Antimalarials - chemistry
,
Antimalarials - metabolism
2012
Malaria, caused by Plasmodium sp, results in almost one million deaths and over 200 million new infections annually. The World Health Organization has recommended that artemisinin-based combination therapies be used for treatment of malaria. Artemisinin is a sesquiterpene lactone isolated from the plant Artemisia annua. However, the supply and price of artemisinin fluctuate greatly, and an alternative production method would be valuable to increase availability. We describe progress toward the goal of developing a supply of semisynthetic artemisinin based on production of the artemisinin precursor amorpha-4,11-diene by fermentation from engineered Saccharomyces cerevisiae, and its chemical conversion to dihydroartemisinic acid, which can be subsequently converted to artemisinin. Previous efforts to produce artemisinin precursors used S. cerevisiae S288C overexpressing selected genes of the mevalonate pathway [Ro et al. (2006) Nature 440:940–943]. We have now overexpressed every enzyme of the mevalonate pathway to ERG20 in S. cerevisiae CEN.PK2, and compared production to CEN.PK2 engineered identically to the previously engineered S288C strain. Overexpressing every enzyme of the mevalonate pathway doubled artemisinic acid production, however, amorpha-4,11-diene production was 10-fold higher than artemisinic acid. We therefore focused on amorpha-4,11-diene production. Development of fermentation processes for the reengineered CEN.PK2 amorpha-4,11-diene strain led to production of > 40 g/L product. A chemical process was developed to convert amorpha-4,11-diene to dihydroartemisinic acid, which could subsequently be converted to artemisinin. The strains and procedures described represent a complete process for production of semisynthetic artemisinin.
Journal Article
Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria
by
Chiu, Francis C. K.
,
Vennerstrom, Jonathan L.
,
Wellems, Thomas E.
in
Adamantane - administration & dosage
,
Adamantane - analogs & derivatives
,
Adamantane - chemistry
2011
Ozonide OZ439 is a synthetic peroxide antimalarial drug candidate designed to provide a single-dose oral cure in humans. OZ439 has successfully completed Phase I clinical trials, where it was shown to be safe at doses up to 1,600 mg and is currently undergoing Phase lia trials in malaria patients. Herein, we describe the discovery of OZ439 and the exceptional antimalarial and pharmacokinetic properties that led to its selection as a clinical drug development candidate. In vitro, OZ439 is fast-acting against all asexual erythrocytic Plasmodium falciparum stages with IC₄₀ values comparable to those for the clinically used artemisinin derivatives. Unlike all other synthetic peroxides and semisynthetic artemisinin derivatives, OZ439 completely cures Plasmodium berghe/-infected mice with a single oral dose of 20 mg/kg and exhibits prophylactic activity superior to that of the benchmark chemoprophylactic agent, mefloquine. Compared with other peroxide-containing antimalarial agents, such as the artemisinin derivatives and the first-generation ozonide OZ277, OZ439 exhibits a substantial increase in the pharmacokinetic half-life and blood concentration versus time profile in three preclinical species. The outstanding efficacy and prolonged blood concentrations of OZ439 are the result of a design strategy that stabilizes the intrinsically unstable pharmacophoric peroxide bond, thereby reducing clearance yet maintaining the necessary Fe (ll)-reactivity to elicit parasite death.
Journal Article
Artemisinin and its derivatives: a promising cancer therapy
by
Kiani, Bushra Hafeez
,
Khayam, Asma Umer
,
Dilshad, Erum
in
Angiogenesis
,
Animal Anatomy
,
Animal Biochemistry
2020
The world is experiencing a cancer epidemic and an increase in the prevalence of the disease. Cancer remains a major killer, accounting for more than half a million deaths annually. There is a wide range of natural products that have the potential to treat this disease. One of these products is artemisinin; a natural product from
Artemisia
plant. The Nobel Prize for Medicine was awarded in 2015 for the discovery of artemisinin in recognition of the drug’s efficacy. Artemisinin produces highly reactive free radicals by the breakdown of two oxygen atoms that kill cancerous cells. These cells sequester iron and accumulate as much as 1000 times in comparison with normal cells. Generally, chemotherapy is toxic to both cancerous cells and normal cells, while no significant cytotoxicity from artemisinin to normal cells has been found in more than 4000 case studies, which makes it far different than conventional chemotherapy. The pleiotropic response of artemisinin in cancer cells is responsible for growth inhibition by multiple ways including inhibition of angiogenesis, apoptosis, cell cycle arrest, disruption of cell migration, and modulation of nuclear receptor responsiveness. It is very encouraging that artemisinin and its derivatives are anticipated to be a novel class of broad-spectrum antitumor agents based on efficacy and safety. This review aims to highlight these achievements and propose potential strategies to develop artemisinin and its derivatives as a new class of cancer therapeutic agents.
Journal Article