Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,668
result(s) for
"Artemisinins - therapeutic use"
Sort by:
Impact of Artemisinin-Based Combination Therapy and Insecticide-Treated Nets on Malaria Burden in Zanzibar
2007
The Roll Back Malaria strategy recommends a combination of interventions for malaria control. Zanzibar implemented artemisinin-based combination therapy (ACT) for uncomplicated malaria in late 2003 and long-lasting insecticidal nets (LLINs) from early 2006. ACT is provided free of charge to all malaria patients, while LLINs are distributed free to children under age 5 y (\"under five\") and pregnant women. We investigated temporal trends in Plasmodium falciparum prevalence and malaria-related health parameters following the implementation of these two malaria control interventions in Zanzibar.
Cross-sectional clinical and parasitological surveys in children under the age of 14 y were conducted in North A District in May 2003, 2005, and 2006. Survey data were analyzed in a logistic regression model and adjusted for complex sampling design and potential confounders. Records from all 13 public health facilities in North A District were analyzed for malaria-related outpatient visits and admissions. Mortality and demographic data were obtained from District Commissioner's Office. P. falciparum prevalence decreased in children under five between 2003 and 2006; using 2003 as the reference year, odds ratios (ORs) and 95% confidence intervals (CIs) were, for 2005, 0.55 (0.28-1.08), and for 2006, 0.03 (0.00-0.27); p for trend < 0.001. Between 2002 and 2005 crude under-five, infant (under age 1 y), and child (aged 1-4 y) mortality decreased by 52%, 33%, and 71%, respectively. Similarly, malaria-related admissions, blood transfusions, and malaria-attributed mortality decreased significantly by 77%, 67% and 75%, respectively, between 2002 and 2005 in children under five. Climatic conditions favorable for malaria transmission persisted throughout the observational period.
Following deployment of ACT in Zanzibar 2003, malaria-associated morbidity and mortality decreased dramatically within two years. Additional distribution of LLINs in early 2006 resulted in a 10-fold reduction of malaria parasite prevalence. The results indicate that the Millennium Development Goals of reducing mortality in children under five and alleviating the burden of malaria are achievable in tropical Africa with high coverage of combined malaria control interventions.
Journal Article
Clinical Pharmacology of Artemisinin-Based Combination Therapies
by
Aweeka, Francesca T.
,
German, Polina I.
in
Animals
,
Antibiotics. Antiinfectious agents. Antiparasitic agents
,
Antimalarials - pharmacokinetics
2008
Malaria, a disease transmitted by the female Anopheles mosquito, has had devastating effects on human populations for more than 4000 years. Treatment of the disease with single drugs, such as chloroquine, sulfadoxine/pyrimethamine or mefloquine, has led to the emergence of resistant
Plasmodium falciparum
parasites that lead to the most severe form of the illness. Artemisinin-based combination therapies are currently recommended by WHO for the treatment of uncomplicated
P. falciparum
malaria. Artemisinin and semisynthetic derivatives, including artesunate, artemether and dihydroartemisinin, are short-acting antimalarial agents that kill parasites more rapidly than conventional antimalarials, and are active against both the sexual and asexual stages of the parasite cycle. Artemisinin fever clearance time is shortened to 32 hours as compared with 2–3 days with older agents. To delay or prevent emergence of resistance, artemisinins are combined with one of several longer-acting drugs — amodiaquine, mefloquine, sulfadoxine/pyrimethamine or lumefantrine — which permit elimination of the residual malarial parasites.
The clinical pharmacology of artemisinin-based combination therapies is highly complex. The short-acting artemisinins and their long-acting counterparts are metabolized and/or inhibit/induce cytochrome P450 enzymes, and may thus participate in drug-drug interactions with multiple drugs on the market. Alterations in antimalarial drug plasma concentrations may lead to either suboptimal efficacy or drug toxicity and may compromise treatment.
Journal Article
Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis
2020
The antimalarial drug artemisinin and its derivatives have been explored as potential anticancer agents, but their underlying mechanisms are controversial. In this study, we found that artemisinin compounds can sensitize cancer cells to ferroptosis, a new form of programmed cell death driven by iron-dependent lipid peroxidation. Mechanistically, dihydroartemisinin (DAT) can induce lysosomal degradation of ferritin in an autophagy-independent manner, increasing the cellular free iron level and causing cells to become more sensitive to ferroptosis. Further, by associating with cellular free iron and thus stimulating the binding of iron-regulatory proteins (IRPs) with mRNA molecules containing iron-responsive element (IRE) sequences, DAT impinges on IRP/IRE-controlled iron homeostasis to further increase cellular free iron. Importantly, in both in vitro and a mouse xenograft model in which ferroptosis was triggered in cancer cells by the inducible knockout of GPX4, we found that DAT can augment GPX4 inhibition-induced ferroptosis in a cohort of cancer cells that are otherwise highly resistant to ferroptosis. Collectively, artemisinin compounds can sensitize cells to ferroptosis by regulating cellular iron homeostasis. Our findings can be exploited clinically to enhance the effect of future ferroptosis-inducing cancer therapies.
Journal Article
Increasing Prevalence of Artemisinin-Resistant HRP2-Negative Malaria in Eritrea
by
Campagne, Pascal
,
Legrand, Eric
,
Warsame, Marian
in
Amodiaquine
,
Amodiaquine - administration & dosage
,
Amodiaquine - pharmacology
2023
Although the clinical efficacy of antimalarial artemisinin-based combination therapies in Africa remains high, the recent emergence of partial resistance to artemisinin in
on the continent is troubling, given the lack of alternative treatments.
In this study, we used data from drug-efficacy studies conducted between 2016 and 2019 that evaluated 3-day courses of artemisinin-based combination therapy (artesunate-amodiaquine or artemether-lumefantrine) for uncomplicated malaria in Eritrea to estimate the percentage of patients with day-3 positivity (i.e., persistent
parasitemia 3 days after the initiation of therapy). We also assayed parasites for mutations in
as predictive markers of partial resistance to artemisinin and screened for deletions in
and
that result in variable performance of histidine rich protein 2 (HRP2)-based rapid diagnostic tests for malaria.
We noted an increase in the percentage of patients with day-3 positivity from 0.4% (1 of 273) in 2016 to 1.9% (4 of 209) in 2017 and 4.2% (15 of 359) in 2019. An increase was also noted in the prevalence of the
R622I mutation, which was detected in 109 of 818 isolates before treatment, from 8.6% (24 of 278) in 2016 to 21.0% (69 of 329) in 2019. The odds of day-3 positivity increased by a factor of 6.2 (95% confidence interval, 2.5 to 15.5) among the patients with
622I variant parasites. Partial resistance to artemisinin, as defined by the World Health Organization, was observed in Eritrea. More than 5% of the patients younger than 15 years of age with day-3 positivity also had parasites that carried
R622I. In vitro, the R622I mutation conferred a low level of resistance to artemisinin when edited into NF54 and Dd2 parasite lines. Deletions in both
and
were identified in 16.9% of the parasites that carried the
R622I mutation, which made them potentially undetectable by HRP2-based rapid diagnostic tests.
The emergence and spread of
lineages with both
-mediated partial resistance to artemisinin and deletions in
and
in Eritrea threaten to compromise regional malaria control and elimination campaigns. (Funded by the Bill and Melinda Gates Foundation and others; Australian New Zealand Clinical Trials Registry numbers, ACTRN12618001223224, ACTRN12618000353291, and ACTRN12619000859189.).
Journal Article
A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms
2016
The emergence of
Plasmodium falciparum
resistance to artemisinin-based therapy is a major global health challenge. In this report, investigators describe the distribution of K13-propeller polymorphisms, the basis of the majority of artemisinin resistance, in 59 countries.
Increased efforts have substantially reduced the global burden of malaria caused by
Plasmodium falciparum,
1
,
2
but the recent gains are threatened by emerging resistance to artemisinins, the cornerstone of current first-line combination treatment.
1
,
3
,
4
Artemisinins are active against a large range of intraerythrocytic developmental stages, but their usefulness is curtailed by ring-stage resistance.
5
,
6
Clinical artemisinin resistance, which was first documented in western Cambodia,
7
–
10
is now prevalent across Southeast Asia and South China.
11
–
17
Widespread artemisinin resistance would have dramatic consequences, since replacement therapies are limited and threatened by resistance.
18
–
22
Therapeutic efficacy studies are the standard method . . .
Journal Article
Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial
2020
Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance.
In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries. Eligible patients were aged 2–65 years, with acute, uncomplicated P falciparum malaria alone or mixed with non-falciparum species, and a temperature of 37·5°C or higher, or a history of fever in the past 24 h. Patients were randomly assigned (1:1) to one of two treatments using block randomisation, depending on their location: in Thailand, Cambodia, Vietnam, and Myanmar patients were assigned to either dihydroartemisinin–piperaquine or dihydroartemisinin–piperaquine plus mefloquine; at three sites in Cambodia they were assigned to either artesunate–mefloquine or dihydroartemisinin–piperaquine plus mefloquine; and in Laos, Myanmar, Bangladesh, India, and the Democratic Republic of the Congo they were assigned to either artemether–lumefantrine or artemether–lumefantrine plus amodiaquine. All drugs were administered orally and doses varied by drug combination and site. Patients were followed-up weekly for 42 days. The primary endpoint was efficacy, defined by 42-day PCR-corrected adequate clinical and parasitological response. Primary analysis was by intention to treat. A detailed assessment of safety and tolerability of the study drugs was done in all patients randomly assigned to treatment. This study is registered at ClinicalTrials.gov, NCT02453308, and is complete.
Between Aug 7, 2015, and Feb 8, 2018, 1100 patients were given either dihydroartemisinin–piperaquine (183 [17%]), dihydroartemisinin–piperaquine plus mefloquine (269 [24%]), artesunate–mefloquine (73 [7%]), artemether–lumefantrine (289 [26%]), or artemether–lumefantrine plus amodiaquine (286 [26%]). The median age was 23 years (IQR 13 to 34) and 854 (78%) of 1100 patients were male. In Cambodia, Thailand, and Vietnam the 42-day PCR-corrected efficacy after dihydroartemisinin–piperaquine plus mefloquine was 98% (149 of 152; 95% CI 94 to 100) and after dihydroartemisinin–piperaquine was 48% (67 of 141; 95% CI 39 to 56; risk difference 51%, 95% CI 42 to 59; p<0·0001). Efficacy of dihydroartemisinin–piperaquine plus mefloquine in the three sites in Myanmar was 91% (42 of 46; 95% CI 79 to 98) versus 100% (42 of 42; 95% CI 92 to 100) after dihydroartemisinin–piperaquine (risk difference 9%, 95% CI 1 to 17; p=0·12). The 42-day PCR corrected efficacy of dihydroartemisinin–piperaquine plus mefloquine (96% [68 of 71; 95% CI 88 to 99]) was non-inferior to that of artesunate–mefloquine (95% [69 of 73; 95% CI 87 to 99]) in three sites in Cambodia (risk difference 1%; 95% CI −6 to 8; p=1·00). The overall 42-day PCR-corrected efficacy of artemether–lumefantrine plus amodiaquine (98% [281 of 286; 95% CI 97 to 99]) was similar to that of artemether–lumefantrine (97% [279 of 289; 95% CI 94 to 98]; risk difference 2%, 95% CI −1 to 4; p=0·30). Both TACTs were well tolerated, although early vomiting (within 1 h) was more frequent after dihydroartemisinin–piperaquine plus mefloquine (30 [3·8%] of 794) than after dihydroartemisinin–piperaquine (eight [1·5%] of 543; p=0·012). Vomiting after artemether–lumefantrine plus amodiaquine (22 [1·3%] of 1703) and artemether–lumefantrine (11 [0·6%] of 1721) was infrequent. Adding amodiaquine to artemether–lumefantrine extended the electrocardiogram corrected QT interval (mean increase at 52 h compared with baseline of 8·8 ms [SD 18·6] vs 0·9 ms [16·1]; p<0·01) but adding mefloquine to dihydroartemisinin–piperaquine did not (mean increase of 22·1 ms [SD 19·2] for dihydroartemisinin–piperaquine vs 20·8 ms [SD 17·8] for dihydroartemisinin–piperaquine plus mefloquine; p=0·50).
Dihydroartemisinin–piperaquine plus mefloquine and artemether–lumefantrine plus amodiaquine TACTs are efficacious, well tolerated, and safe treatments of uncomplicated P falciparum malaria, including in areas with artemisinin and ACT partner-drug resistance.
UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, UK Medical Research Council, and US National Institutes of Health.
Journal Article
Evolution of Partial Resistance to Artemisinins in Malaria Parasites in Uganda
by
Giesbrecht, David
,
Legac, Jennifer
,
Garg, Shreeya
in
Animals
,
Artemisinin
,
Artemisinins - pharmacology
2023
Artemisinins are the backbone of combination therapies for malaria. In a study of malaria in Uganda, investigators found multifocal emergence and spread of
Plasmodium falciparum
with partial resistance to artemisinins.
Journal Article
Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda
2022
Artemisinin partial resistance may facilitate selection of
Plasmodium falciparum
resistant to combination therapy partner drugs. We evaluated 99
P. falciparum
isolates collected in 2021 from northern Uganda, where resistance-associated PfK13 C469Y and A675V mutations have emerged, and eastern Uganda, where these mutations are uncommon. With the ex vivo ring survival assay, isolates with the 469Y mutation (median survival 7.3% for mutant, 2.5% mixed, and 1.4% wild type) and/or mutations in Pfcoronin or falcipain-2a, had significantly greater survival; all isolates with survival >5% had mutations in at least one of these proteins. With ex vivo growth inhibition assays, susceptibility to lumefantrine (median IC
50
14.6 vs. 6.9 nM,
p
< 0.0001) and dihydroartemisinin (2.3 vs. 1.5 nM,
p
= 0.003) was decreased in northern vs. eastern Uganda; 14/49 northern vs. 0/38 eastern isolates had lumefantrine IC
50
> 20 nM (
p
= 0.0002). Targeted sequencing of 819 isolates from 2015–21 identified multiple polymorphisms associated with altered drug susceptibility, notably PfK13 469Y with decreased susceptibility to lumefantrine (
p
= 6 × 10
−8
) and PfCRT mutations with chloroquine resistance (
p
= 1 × 10
−20
). Our results raise concern regarding activity of artemether-lumefantrine, the first-line antimalarial in Uganda.
In this work, susceptibilities to two key antimalarials, dihydroartemisinin and lumefantrine, were associated with multiple genetic polymorphisms in
Plasmodium falciparum
, and were lower in northern Uganda, where resistance-mediating mutations have emerged, compared to eastern Uganda.
Journal Article
The emergence of artemisinin partial resistance in Africa: how do we respond?
by
Rosenthal, Philip J
,
Asua, Victor
,
Ishengoma, Deus S
in
Africa - epidemiology
,
Antimalarial agents
,
Antimalarials - pharmacology
2024
Malaria remains one of the most important infectious diseases in the world, with the greatest burden in sub-Saharan Africa, primarily from Plasmodium falciparum infection. The treatment and control of malaria is challenged by resistance to most available drugs, but partial resistance to artemisinins (ART-R), the most important class for the treatment of malaria, was until recently confined to southeast Asia. This situation has changed, with the emergence of ART-R in multiple countries in eastern Africa. ART-R is mediated primarily by single point mutations in the P falciparum kelch13 protein, with several mutations present in African parasites that are now validated resistance mediators based on clinical and laboratory criteria. Major priorities at present are the expansion of genomic surveillance for ART-R mutations across the continent, more frequent testing of the efficacies of artemisinin-based regimens against uncomplicated and severe malaria in trials, more regular assessment of ex-vivo antimalarial drug susceptibilities, consideration of changes in treatment policy to deter the spread of ART-R, and accelerated development of new antimalarial regimens to overcome the impacts of ART-R. The emergence of ART-R in Africa is an urgent concern, and it is essential that we increase efforts to characterise its spread and mitigate its impact.
Journal Article
The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study
by
Miotto, Olivo
,
Tun, Kyaw M
,
Sutawong, Kreepol
in
Antimalarials
,
Antimalarials - pharmacology
,
Antimalarials - therapeutic use
2017
Evidence suggests that the PfKelch13 mutations that confer artemisinin resistance in falciparum malaria have multiple independent origins across the Greater Mekong subregion, which has motivated a regional malaria elimination agenda. We aimed to use molecular genotyping to assess antimalarial drug resistance selection and spread in the Greater Mekong subregion.
In this observational study, we tested Plasmodium falciparum isolates from Myanmar, northeastern Thailand, southern Laos, and western Cambodia for PfKelch13 mutations and for Pfplasmepsin2 gene amplification (indicating piperaquine resistance). We collected blood spots from patients with microscopy or rapid test confirmed uncomplicated falciparum malaria. We used microsatellite genotyping to assess genetic relatedness.
As part of studies on the epidemiology of artemisinin-resistant malaria between Jan 1, 2008, and Dec 31, 2015, we collected 434 isolates. In 2014–15, a single long PfKelch13 C580Y haplotype (−50 to +31·5 kb) lineage, which emerged in western Cambodia in 2008, was detected in 65 of 88 isolates from northeastern Thailand, 86 of 111 isolates from southern Laos, and 14 of 14 isolates from western Cambodia, signifying a hard transnational selective sweep. Pfplasmepsin2 amplification occurred only within this lineage, and by 2015 these closely related parasites were found in ten of the 14 isolates from Cambodia and 15 of 15 isolates from northeastern Thailand. C580Y mutated parasites from Myanmar had a different genetic origin.
Our results suggest that the dominant artemisinin-resistant P falciparum C580Y lineage probably arose in western Cambodia and then spread to Thailand and Laos, outcompeting other parasites and acquiring piperaquine resistance. The emergence and spread of fit artemisinin-resistant P falciparum parasite lineages, which then acquire partner drug resistance across the Greater Mekong subregion, threatens regional malaria control and elimination goals. Elimination of falciparum malaria from this region should be accelerated while available antimalarial drugs still remain effective.
The Wellcome Trust and the Bill and Melinda Gates Foundation.
Journal Article