Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,532 result(s) for "Artificial Neural Network (ANN)"
Sort by:
Prediction of Driver’s Intention of Lane Change by Augmenting Sensor Information Using Machine Learning Techniques
Driver assistance systems have become a major safety feature of modern passenger vehicles. The advanced driver assistance system (ADAS) is one of the active safety systems to improve the vehicle control performance and, thus, the safety of the driver and the passengers. To use the ADAS for lane change control, rapid and correct detection of the driver’s intention is essential. This study proposes a novel preprocessing algorithm for the ADAS to improve the accuracy in classifying the driver’s intention for lane change by augmenting basic measurements from conventional on-board sensors. The information on the vehicle states and the road surface condition is augmented by using an artificial neural network (ANN) models, and the augmented information is fed to a support vector machine (SVM) to detect the driver’s intention with high accuracy. The feasibility of the developed algorithm was tested through driving simulator experiments. The results show that the classification accuracy for the driver’s intention can be improved by providing an SVM model with sufficient driving information augmented by using ANN models of vehicle dynamics.
Determining the optimum layer combination for cross-laminated timber panels according to timber strength classes using Artificial Neural Networks
The primary aim of this work was to determine the effects of production parameters, such as wood species and timber strength classes, on some mechanical properties of cross-laminated timber (CLT) panels using artificial neural network (ANN) prediction models. Subsequently, using the models obtained from the analyses, the goal was to identify the optimum layer combinations of timber strength classes used in the middle and outer layers that would provide the highest mechanical properties for CLT panels. CLT panels made from spruce and alder timbers, as well as hybrid panels created from combinations of these two wood species, were produced. The strength classes of the timbers were determined non-destructively according to the TS EN 338 (2016) standard using an acoustic testing device. The bending strength and modulus of elasticity values of the CLT panels were determined destructively according to the TS EN 408 (2019) standard. According to ANN results, the optimum timber strength classes and layer combinations were determined for bending strength as C24-C27-C24 for spruce CLT, D18-D24-D18 for alder CLT, C30-D40-C30 and D18-C30-D18 for hybrid panels; and for modulus of elasticity, C22-C27-C22 for spruce, D35-D30-D35 for alder, C16-D24-C16, and D24-C24-D24 for hybrid panels.
Water Budget Closure in the Upper Chao Phraya River Basin, Thailand Using Multisource Data
Accurate quantification of the terrestrial water cycle relies on combinations of multisource datasets. This analysis uses data from remotely sensed, in-situ, and reanalysis records to quantify the terrestrial water budget/balance and component uncertainties in the upper Chao Phraya River Basin from May 2002 to April 2020. Three closure techniques are applied to merge independent records of water budget components, creating up to 72 probabilistic realizations of the monthly water budget for the upper Chao Phraya River Basin. An artificial neural network (ANN) model is used to gap-fill data in and between GRACE and GRACE-FO-based terrestrial water storage anomalies. The ANN model performed well with r ≥ 0.95, NRMSE = 0.24 − 0.37, and NSE ≥ 0.89 during the calibration and validation phases. The cumulative residual error in the water budget ensemble mean accounts for ~15% of the ensemble mean for both the precipitation and evapotranspiration. An increasing trend of 0.03 mm month−1 in the residual errors may be partially attributable to increases in human activity and the relative redistribution of biases among other water budget variables. All three closure techniques show similar directions of constraints (i.e., wet or dry bias) in water budget variables with slightly different magnitudes. Our quantification of water budget residual errors may help benchmark regional hydroclimate models for understanding the past, present, and future status of water budget components and effectively manage regional water resources, especially during hydroclimate extremes.
Sensitivity Analysis of Parameters Affecting Wetland Water Levels: A Study of Flood Detention Basin, Colombo, Sri Lanka
Wetlands play a vital role in ecosystems. They help in flood accumulation, water purification, groundwater recharge, shoreline stabilization, provision of habitats for flora and fauna, and facilitation of recreation activities. Although wetlands are hot spots of biodiversity, they are one of the most endangered ecosystems on the Earth. This is not only due to anthropogenic activities but also due to changing climate. Many studies can be found in the literature to understand the water levels of wetlands with respect to the climate; however, there is a lack of identification of the major meteorological parameters affecting the water levels, which are much localized. Therefore, this study, for the first time in Sri Lanka, was carried out to understand the most important parameters affecting the water depth of the Colombo flood detention basin. The temporal behavior of water level fluctuations was tested among various combinations of hydro-meteorological parameters with the help of Artificial Neural Networks (ANN). As expected, rainfall was found to be the most impacting parameter; however, apart from that, some interesting combinations of meteorological parameters were found as the second layer of impacting parameters. The rainfall–nighttime relative humidity, rainfall–evaporation, daytime relative humidity–evaporation, and rainfall–nighttime relative humidity–evaporation combinations were highly impactful toward the water level fluctuations. The findings of this study help to sustainably manage the available wetlands in Colombo, Sri Lanka. In addition, the study emphasizes the importance of high-resolution on-site data availability for higher prediction accuracy.
Assessing Dynamic Conditions of the Retaining Wall: Developing Two Hybrid Intelligent Models
The precise estimation and forecast of the safety factor (SF) in civil engineering applications is considered as an important issue to reduce engineering risk. The present research investigates new artificial intelligence (AI) techniques for the prediction of SF values of retaining walls, as important and resistant structures for ground forces. These structures have complicated performances in dynamic conditions. Consequently, more than 8000 designs of these structures were dynamically evaluated. Two AI models, namely the imperialist competitive algorithm (ICA)-artificial neural network (ANN), and the genetic algorithm (GA)-ANN were used for the forecasting of SF values. In order to design intelligent models, parameters i.e., the wall thickness, stone density, wall height, soil density, and internal soil friction angle were examined under different dynamic conditions and assigned as inputs to predict SF of retaining walls. Various models of these systems were constructed and compared with each other to obtain the best one. Results of models indicated that although both hybrid models are able to predict SF values with a high accuracy and they can be introduced as new models in the field, the retaining wall performance could be properly predicted in dynamic conditions using the ICA-ANN model. Under these conditions, a combination of engineering design and artificial intelligence techniques can be used to control and secure retaining walls in dynamic conditions.
Wetland Water Level Prediction Using Artificial Neural Networks—A Case Study in the Colombo Flood Detention Area, Sri Lanka
Historically, wetlands have not been given much attention in terms of their value due to the general public being unaware. Nevertheless, wetlands are still threatened by many anthropogenic activities, in addition to ongoing climate change. With these recent developments, water level prediction of wetlands has become an important task in order to identify potential environmental damage and for the sustainable management of wetlands. Therefore, this study identified a reliable neural network model by which to predict wetland water levels over the Colombo flood detention area, Sri Lanka. This is the first study conducted using machine learning techniques in wetland water level predictions in Sri Lanka. The model was developed with independent meteorological variables, including rainfall, evaporation, temperature, relative humidity, and wind speed. The water levels measurements of previous years were used as dependent variables, and the analysis was based on a seasonal timescale. Two neural network training algorithms, the Levenberg Marquardt algorithm (LM) and the Scaled Conjugate algorithm (SG), were used to model the nonlinear relationship, while the Mean Squared Error (MSE) and Coefficient of Correlation (CC) were used as the performance indices by which to understand the robustness of the model. In addition, uncertainty analysis was carried out using d-factor simulations. The performance indicators showed that the LM algorithm produced better results by which to model the wetland water level ahead of the SC algorithm, with a mean squared error of 0.0002 and a coefficient of correlation of 0.99. In addition, the computational efficiencies were excellent in the LM algorithm compared to the SC algorithm in terms of the prediction of water levels. LM showcased 3–5 epochs, whereas SC showcased 34–50 epochs of computational efficiencies for all four seasonal predictions. However, the d-factor showcased that the results were not within the cluster of uncertainty. Therefore, the overall results suggest that the Artificial Neural Network can be successfully used to predict the wetland water levels, which is immensely important in the management and conservation of the wetlands.
Linking the past, present and future scenarios of soil erosion modeling in a river basin
BACKGROUND AND OBJECTIVES: Soil erosion is considered one of the major indicators of soil degradation in our environment. Extensive soil erosion process leads to erosion of nutrients in the topsoil and decreases in fertility and hence productivity. Moreover, creeping erosion leads to landslides in the hilly regions of the study area that affects the socio-economics of the inhabitants. The current study focuses on the estimation of soil erosion rate for the year 2011 to 2019 and projection for the years 2021, 2023 and 2025. METHODS: In this study, the Revised Universal Soil Loss Equation is used for estimation of soil erosion in the study area for the year 2011 to 2019. Using Artificial Neural Network-based Cellular Automata simulation, the Land Use Land Cover is projected for the future years 2021, 2023 and 2025. Using the projected layer as one of the spatial variables and applying the same model, Soil Erosion based on Revised Universal soil loss equation is projected for a corresponding years. FINDINGS: For both cases of projection, simulated layers of 2019 (land use land cover and soil erosion) are correlated with the estimated layer of 2019 using actual variables and validated. The agreement and accuracy of the model used in the case land use are 0.92 and 96.21% for the year 2019. The coefficient of determination of the model for both simulations is also observed to be 0.875 and 0.838. The simulated future soil erosion rate ranges from minimum of 0 t/ha/y to maximum of 524.271 t/ha/y, 1160.212 t/ha/y and 783.135 t/ha/y in the year 2021, 2023 and 2025, respectively. CONCLUSION: The study has emphasized the use of artificial neural network-based Cellular automata model for simulation of land use and land cover and subsequently estimation of soil erosion rate. With the simulation of future soil erosion rate, the study describes the trend in the erosion rate from past to future, passing through present scenario. With the scarcity of data, the methodology is found to be accurate and reliable for the region under study.
Analysis of fat mass value, clinical and metabolic data and interleukin-6 in HIV-positive males using regression analyses and artificial neural network
The purpose of this study is to analyses the relationship between fat mass and inflammation marker, interleukin-6, clinical and metabolic data in 71 human immunodeficiency virus (HIV)-positive male patients using bivariate linear regression analyses and artificial neural network. The data used consisted of measurements collected from HIV male subjects aged 26 to 69 years, with body mass index (BMI) values between 15.47 and 36.98 kg m-2 and the fat mass values between 1.00 kg and 16.70 kg. The bivariate linear regression analyses showed that weight, waist-hip ratio, BMI, triglycerides, high-density lipoprotein and HIV viral load value were significant risk factors associated with the body fat mass in male HIV patients. Furthermore, an in-depth non-linear analysis has been performed using artificial neural network (ANN) to predict fat mass by using the significant predictors as input. ANN model with four hidden neurons obtained the highest mean predictive accuracy percentage of 85.26%. The finding of this study is able to help with the evaluation of the fat mass in the male HIV patients that consequently reflects the patients metabolic-related irregularity and immune response. It is also believed that the outcome from the analysis can help future HIV-related study on the prediction of body fat mass in male HIV patients especially in settings where dual energy X-ray absorptiometry assessments, the standard measurement method for fat mass are not available or affordable
Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting
Flood forecasting is an essential requirement in integrated water resource management. This paper suggests a Long Short-Term Memory (LSTM) neural network model for flood forecasting, where the daily discharge and rainfall were used as input data. Moreover, characteristics of the data sets which may influence the model performance were also of interest. As a result, the Da River basin in Vietnam was chosen and two different combinations of input data sets from before 1985 (when the Hoa Binh dam was built) were used for one-day, two-day, and three-day flowrate forecasting ahead at Hoa Binh Station. The predictive ability of the model is quite impressive: The Nash–Sutcliffe efficiency (NSE) reached 99%, 95%, and 87% corresponding to three forecasting cases, respectively. The findings of this study suggest a viable option for flood forecasting on the Da River in Vietnam, where the river basin stretches between many countries and downstream flows (Vietnam) may fluctuate suddenly due to flood discharge from upstream hydroelectric reservoirs.
Thermal Comfort Evaluation Using Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANNs)
The thermal sensations of people differ from each other, even if they are in the same thermal conditions. The research was carried out in a didactic teaching room located in the building of the Faculty of Civil and Environmental Engineering in Poland. Tests on the temperature were carried out simultaneously with questionnaire surveys. The purpose of the survey was to define sensations regarding the thermal comfort of people in the same room, in different conditions of internal and external temperatures. In total 333 questionnaires were analyzed. After the discriminant and neural analyses it was found that it is not possible to forecast the thermal comfort assessment in the room based on the analyzed variables: gender, indoor air temperature, external wall radiant temperature, and outdoor air temperature. The thermal comfort assessments of men and women were similar and overlapped. The results of this study confirm that under the same thermal conditions about 85% of respondents assess thermal comfort as good, and about 15% of respondents assess thermal comfort as bad. The test results presented in this article are similar to the results of tests carried out by other authors in other climatic conditions.