Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
307 result(s) for "Artiodactyla - physiology"
Sort by:
White matter volume and white/gray matter ratio in mammalian species as a consequence of the universal scaling of cortical folding
Because the white matter of the cerebral cortex contains axons that connect distant neurons in the cortical gray matter, the relationship between the volumes of the 2 cortical compartments is key for information transmission in the brain. It has been suggested that the volume of the white matter scales universally as a function of the volume of the gray matter across mammalian species, as would be expected if a global principle of wiring minimization applied. Using a systematic analysis across several mammalian clades, here we show that the volume of the white matter does not scale universally with the volume of the gray matter across mammals and is not optimized for wiring minimization. Instead, the ratio between volumes of gray and white matter is universally predicted by the same equation that predicts the degree of folding of the cerebral cortex, given the clade-specific scaling of cortical thickness, such that the volume of the gray matter (or the ratio of gray to total cortical volumes) divided by the square root of cortical thickness is a universal function of total cortical volume, regardless of the number of cortical neurons. Thus, the very mechanism that we propose to generate cortical folding also results in compactness of the white matter to a predictable degree across a wide variety of mammalian species.
Optimal truss design with MOHO: A multi-objective optimization perspective
This research article presents the Multi-Objective Hippopotamus Optimizer (MOHO), a unique approach that excels in tackling complex structural optimization problems. The Hippopotamus Optimizer (HO) is a novel approach in meta-heuristic methodology that draws inspiration from the natural behaviour of hippos. The HO is built upon a trinary-phase model that incorporates mathematical representations of crucial aspects of Hippo’s behaviour, including their movements in aquatic environments, defense mechanisms against predators, and avoidance strategies. This conceptual framework forms the basis for developing the multi-objective (MO) variant MOHO, which was applied to optimize five well-known truss structures. Balancing safety precautions and size constraints concerning stresses on individual sections and constituent parts, these problems also involved competing objectives, such as reducing the weight of the structure and the maximum nodal displacement. The findings of six popular optimization methods were used to compare the results. Four industry-standard performance measures were used for this comparison and qualitative examination of the finest Pareto-front plots generated by each algorithm. The average values obtained by the Friedman rank test and comparison analysis unequivocally showed that MOHO outperformed other methods in resolving significant structure optimization problems quickly. In addition to finding and preserving more Pareto-optimal sets, the recommended algorithm produced excellent convergence and variance in the objective and decision fields. MOHO demonstrated its potential for navigating competing objectives through diversity analysis. Additionally, the swarm plots effectively visualize MOHO’s solution distribution of MOHO across iterations, highlighting its superior convergence behaviour. Consequently, MOHO exhibits promise as a valuable method for tackling complex multi-objective structure optimization issues.
Home ranges, habitat and body mass: simple correlates of home range size in ungulates
The spatial scale of animal space use, e.g. measured as individual home range size, is a key trait with important implications for ecological and evolutionary processes as well as management and conservation of populations and ecosystems. Explaining variation in home range size has therefore received great attention in ecological research. However, few studies have examined multiple hypotheses simultaneously, which is important provided the complex interactions between life history, social system and behaviour. Here, we review previous studies on home range size in ungulates, supplementing with a meta-analysis, to assess how differences in habitat use and species characteristics affect the relationship between body mass and home range size. Habitat type was the main factor explaining interspecific differences in home range size after accounting for species body mass and group size. Species using open habitats had larger home ranges for a given body mass than species using closed habitats, whereas species in open habitats showed a much weaker allometric relationship compared with species living in closed habitats. We found no support for relationships between home range size and species diet or mating system, or any sexual differences. These patterns suggest that the spatial scale of animal movement mainly is a combined effect of body mass, group size and the landscape structure. Accordingly, landscape management must acknowledge the influence of spatial distribution of habitat types on animal behaviour to ensure natural processes affecting demography and viability of ungulate populations.
Cardiac conduction system and the electrocardiogram of the common hippopotamus (Hippopotamus amphibius)
The common hippopotamus (Hippopotamus amphibius) shares a common terrestrial ancestor with whales (Cetacea) and has independently evolved similar physiological adaptations to their aquatic lifestyle. Although several studies have explored the electrical signalling in whale hearts, the understanding of the conduction system and electrical activation of the hippopotamus heart remains sparse. We set out to map the conduction system within the hippopotamus heart and determine the sequence of electrical activation, including the mean electrical axis of ventricular activation. ECGs were recorded from three anaesthetized hippopotamuses. Histological samples were collected from two of these animals and from an additional animal. The hearts of the hippopotamuses constituted ∼0.3% of body mass and as in whales, the hearts were situated more cranially in the thoracic cavity compared to most terrestial mammals, and were spanning from the first to the fourth intercostal space. The network of Purkinje fibre strands extended deep into the ventricular walls and consisted of large, ovoid cells. Orthogonal ECG recordings revealed a mean electrical axis pointing towards the neck of the animal, indicating that electrical activation takes place in an apex‐to‐base direction. What is the central question of this study? In this study, we hypothesized that the mean electrical activation of the hippopotamus ventricles takes place in an apex‐to‐base direction. What is the main finding and its importance? We found that the Purkinje fibre network extends deep into the ventricular and septal wall, resulting in a mean electrical activation of the hippopotamus heart in the apex‐to‐base direction. This finding aligns with other mammals within the superorder Artiodactyla, where the mean electrical activation reflects the distribution of the Purkinje fibre network, rather than the ventricular mass as observed in Primates and Carnivora.
Investigating Neolithic caprine husbandry in the Central Pyrenees: Insights from a multi-proxy study at Els Trocs cave (Bisaurri, Spain)
Sheep remains constitute the main archaeozoological evidence for the presence of Early Neolithic human groups in the highlands of the Southern Pyrenees but understanding the role of herding activities in the Neolithisation process of this mountain ecosystem calls for the analysis of large and well-dated faunal assemblages. Cova de Els Trocs (Bisaurri, Huesca, Spain), a cave located at 1564 m a.s.l on the southern slopes of the Central Pyrenees, is an excellent case study since it was seasonally occupied throughout the Neolithic (ca. 5312–2913 cal. BC) and more than 4000 caprine remains were recovered inside. The multi-proxy analytical approach here presented has allowed us to offer new data elaborating on vertical mobility practices and herd management dynamics as has not been attempted up until now within Neolithic high-mountain sites in the Iberian Peninsula. For the first time, δ 18 O and δ 13 C stable isotope analyses offer direct evidence on both the regular practice of altitudinal movements of sheep flocks and the extended breeding season of sheep. Autumn births are recorded from the second half of the fifth millennium cal. BC onwards. Age-at-death distributions illustrate the progressive decline in caprine perinatal mortality together with the rising survival rate of individuals older than six months of age and the larger frequency of adults. This trend alongside the ‘off-season’ lambing signal at the implementation of husbandry techniques over time, probably aiming to increase the size of the flocks and their productivity. Palaeoparasitological analyses of sediment samples document also the growing reliance on herding activities of the human groups visiting the Els Trocs cave throughout the Neolithic sequence. In sum, our work provides substantial arguments to conclude that the advanced herding management skills of the Early Neolithic communities arriving in Iberia facilitated the anthropisation process of the subalpine areas of the Central Pyrenees.
A test of the lateral semicircular canal correlation to head posture, diet and other biological traits in “ungulate” mammals
For over a century, researchers have assumed that the plane of the lateral semicircular canal of the inner ear lies parallel to the horizon when the head is at rest, and used this assumption to reconstruct head posture in extinct species. Although this hypothesis has been repeatedly questioned, it has never been tested on a large sample size and at a broad taxonomic scale in mammals. This study presents a comprehensive test of this hypothesis in over one hundred “ungulate” species. Using CT scanning and manual segmentation, the orientation of the skull was reconstructed as if the lateral semicircular canal of the bony labyrinth was aligned horizontally. This reconstructed cranial orientation was statistically compared to the actual head posture of the corresponding species using a dataset of 10,000 photographs and phylogenetic regression analysis. A statistically significant correlation between the reconstructed cranial orientation and head posture is found, although the plane of the lateral semicircular canal departs significantly from horizontal. We thus caution against the use of the lateral semicircular canal as a proxy to infer precisely the horizontal plane on dry skulls and in extinct species. Diet (browsing or grazing) and head-butting behaviour are significantly correlated to the orientation of the lateral semicircular canal, but not to the actual head posture. Head posture and the orientation of the lateral semicircular canal are both strongly correlated with phylogenetic history.
Footfall patterns and stride parameters of Common hippopotamus ( Hippopotamus amphibius ) on land
Common hippopotamuses (hippos) are among the largest extant land mammals. They thus offer potential further insight into how giant body size on land influences locomotor patterns and abilities. Furthermore, as they have semi-aquatic habits and unusual morphology, they prompt important questions about how locomotion evolved in Hippopotamidae. However, basic information about how hippos move is limited and sometimes contradictory. We aimed to test if hippos trot at all speeds and if they ever use an aerial (suspended) phase, and to quantify how their locomotor patterns (footfalls and stride parameters) change with approximate speed. We surveyed videos available online and collected new video data from two zoo hippos in order to calculate the data needed to achieve our aims; gathering a sample of 169 strides from 32 hippos. No hippos studied used other than trotting (or near-trotting) footfall patterns, but at the fastest relative speeds hippos used brief aerial phases, apparently a new discovery. Hippos exhibit relatively greater athletic capacity than elephants in several ways, but perhaps not greater than rhinoceroses. Our data help form a baseline for assessing if other hippos use normal locomotion; relevant to clinical veterinary assessments of lameness; and for reconstructing the evolutionary biomechanics of hippo lineages.
Variable social organization is ubiquitous in Artiodactyla and probably evolved from pair-living ancestors
Previous studies to understand the evolution of inter specific variation in mammalian social organization (SO; composition of social units) produced inconsistent results, possibly by ignoring intra specific variation. Here we present systematic data on SO in artiodactyl populations, coding SO as solitary, pair-living, group-living, sex-specific or variable (different kinds of SOs in the same population). We found that 62% of 245 populations and 83% of species (83/100) exhibited variable SO. Using Bayesian phylogenetic mixed-effects models, we simultaneously tested whether research effort, habitat, sexual dimorphism, breeding seasonality or body size predicted the likelihood of different SOs and inferred the ancestral SO. Body size and sexual dimorphism were strongly associated with different SOs. Contingent on the small body size (737 g) and putative sexual monomorphism of the earliest fossil artiodactyl, the ancestral SO was most likely to be pair-living (probability = 0.76, 95% CI = 0–1), followed by variable ( p = 0.19, 95% CI = 0–0.99). However, at body size values typical of extant species, variable SO becomes the dominant form ( p = 0.74, 95% CI = 0.18–1.00). Distinguishing different kinds of ‘variable’ highlights transitions from SOs involving pair-living to SOs involving solitary and/or group-living with increasing body size and dimorphism. Our results support the assumption that ancestral artiodactyl was pair-living and highlight the ubiquity of intraspecific variation in SO.
difference conservation makes to extinction risk of the world's ungulates
Previous studies show that conservation actions have prevented extinctions, recovered populations, and reduced declining trends in global biodiversity. However, all studies to date have substantially underestimated the difference conservation action makes because they failed to account fully for what would have happened in the absence thereof. We undertook a scenario‐based thought experiment to better quantify the effect conservation actions have had on the extinction risk of the world's 235 recognized ungulate species. We did so by comparing species’ observed conservation status in 2008 with their estimated status under counterfactual scenarios in which conservation efforts ceased in 1996. We estimated that without conservation at least 148 species would have deteriorated by one International Union for Conservation of Nature (IUCN) Red List category, including 6 species that now would be listed as extinct or extinct in the wild. The overall decline in the conservation status of ungulates would have been nearly 8 times worse than observed. This trend would have been greater still if not for conservation on private lands. While some species have benefited from highly targeted interventions, such as reintroduction, most benefited collaterally from conservation such as habitat protection. We found that the difference conservation action makes to the conservation status of the world's ungulate species is likely to be higher than previously estimated. Increased, and sustained, investment could help achieve further improvements.