Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
26,483 result(s) for "Ascorbic acid"
Sort by:
Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis
Background Parenterally administered ascorbic acid modulates sepsis-induced inflammation and coagulation in experimental animal models. The objective of this randomized, double-blind, placebo-controlled, phase I trial was to determine the safety of intravenously infused ascorbic acid in patients with severe sepsis. Methods Twenty-four patients with severe sepsis in the medical intensive care unit were randomized 1:1:1 to receive intravenous infusions every six hours for four days of ascorbic acid: Lo-AscA (50 mg/kg/24 h, n = 8), or Hi-AscA (200 mg/kg/24 h, n = 8), or Placebo (5% dextrose/water, n = 8). The primary end points were ascorbic acid safety and tolerability, assessed as treatment-related adverse-event frequency and severity. Patients were monitored for worsened arterial hypotension, tachycardia, hypernatremia, and nausea or vomiting. In addition Sequential Organ Failure Assessment (SOFA) scores and plasma levels of ascorbic acid, C-reactive protein, procalcitonin, and thrombomodulin were monitored. Results Mean plasma ascorbic acid levels at entry for the entire cohort were 17.9 ± 2.4 μM (normal range 50-70 μM). Ascorbic acid infusion rapidly and significantly increased plasma ascorbic acid levels. No adverse safety events were observed in ascorbic acid-infused patients. Patients receiving ascorbic acid exhibited prompt reductions in SOFA scores while placebo patients exhibited no such reduction. Ascorbic acid significantly reduced the proinflammatory biomarkers C-reactive protein and procalcitonin. Unlike placebo patients, thrombomodulin in ascorbic acid infused patients exhibited no significant rise, suggesting attenuation of vascular endothelial injury. Conclusions Intravenous ascorbic acid infusion was safe and well tolerated in this study and may positively impact the extent of multiple organ failure and biomarkers of inflammation and endothelial injury. Trial registration ClinicalTrials.gov identifier NCT01434121 .
The Pharmacokinetics of Vitamin C
The pharmacokinetics of vitamin C (vitC) is indeed complex. Regulated primarily by a family of saturable sodium dependent vitC transporters (SVCTs), the absorption and elimination are highly dose-dependent. Moreover, the tissue specific expression levels and subtypes of these SVCTs result in a compartmentalized distribution pattern with a diverse range of organ concentrations of vitC at homeostasis ranging from about 0.2 mM in the muscle and heart, and up to 10 mM in the brain and adrenal gland. The homeostasis of vitC is influenced by several factors, including genetic polymorphisms and environmental and lifestyle factors such as smoking and diet, as well as diseases. Going from physiological to pharmacological doses, vitC pharmacokinetics change from zero to first order, rendering the precise calculation of dosing regimens in, for example, cancer and sepsis treatment possible. Unfortunately, the complex pharmacokinetics of vitC has often been overlooked in the design of intervention studies, giving rise to misinterpretations and erroneous conclusions. The present review outlines the diverse aspects of vitC pharmacokinetics and examines how they affect vitC homeostasis under a variety of conditions.
Topical delivery of l-ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin
l-Ascorbic acid (LAA) is considered a powerful antioxidant that protects skin from premature aging. Maintaining the stability of vitamin C remains the biggest challenge in cosmeceuticals. Our main aim is the entrapment of high dose of vitamin C in spanlastic vesicles to provide maximum stability and efficacy. LAA-loaded spanlastics were prepared by ethanol injection method and were characterized for entrapment efficiency (EE%), particles size (PS), polydispersity index (PDI), zeta potential, deformability index (DI) and in vivo skin permeation. Selected spanlastics formula composed of span 60 and tween 60 (5:1) showed highest EE% of 89.77 ± 3.61% (w/w), high deformability of 11.13 ± 1.145 as well as good physical and chemical stability for 6 months. Improved drug penetration into stratum corneum (SC) was obtained from spanlastics compared to topical LAA solution. Quantitative real time PCR revealed that MMP2 and MMP9 levels were significantly suppressed in response to LAA spanlastics treated rats by 30.4% and 65.3%, respectively, when compared to the control group after exposure to UV irradiation. Results were confirmed by western blot analysis. Histopathological study of rat skin after UV irradiation revealed that application of LAA-loaded spanlastics provided the highest skin protection compared to UVB and LAA solution treated group which was evident by the normal thick epidermal morphology and the densely arranged dermal collagen fibers. LAA-loaded spanlastics successfully improved LAA stability, skin permeation and antioxidant protection against skin photodamage.
Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence
Vitamins and minerals are essential to humans as they play essential roles in a variety of basic metabolic pathways that support fundamental cellular functions. In particular, their involvement in energy-yielding metabolism, DNA synthesis, oxygen transport, and neuronal functions makes them critical for brain and muscular function. These, in turn, translate into effects on cognitive and psychological processes, including mental and physical fatigue. This review is focused on B vitamins (B1, B2, B3, B5, B6, B8, B9 and B12), vitamin C, iron, magnesium and zinc, which have recognized roles in these outcomes. It summarizes the biochemical bases and actions of these micronutrients at both the molecular and cellular levels and connects them with cognitive and psychological symptoms, as well as manifestations of fatigue that may occur when status or supplies of these micronutrients are not adequate.
Patients with Community Acquired Pneumonia Exhibit Depleted Vitamin C Status and Elevated Oxidative Stress
Pneumonia is a severe lower respiratory tract infection that is a common complication and a major cause of mortality of the vitamin C-deficiency disease scurvy. This suggests an important link between vitamin C status and lower respiratory tract infections. Due to the paucity of information on the vitamin C status of patients with pneumonia, we assessed the vitamin C status of 50 patients with community-acquired pneumonia and compared these with 50 healthy community controls. The pneumonia cohort comprised 44 patients recruited through the Acute Medical Assessment Unit (AMAU) and 6 patients recruited through the Intensive Care Unit (ICU); mean age 68 ± 17 years, 54% male. Clinical, microbiological and hematological parameters were recorded. Blood samples were tested for vitamin C status using HPLC with electrochemical detection and protein carbonyl concentrations, an established marker of oxidative stress, using ELISA. Patients with pneumonia had depleted vitamin C status compared with healthy controls (23 ± 14 µmol/L vs. 56 ± 24 µmol/L, p < 0.001). The more severe patients in the ICU had significantly lower vitamin C status than those recruited through AMAU (11 ± 3 µmol/L vs. 24 ± 14 µmol/L, p = 0.02). The pneumonia cohort comprised 62% with hypovitaminosis C and 22% with deficiency, compared with only 8% hypovitaminosis C and no cases of deficiency in the healthy controls. The pneumonia cohort also exhibited significantly elevated protein carbonyl concentrations compared with the healthy controls (p < 0.001), indicating enhanced oxidative stress in the patients. We were able to collect subsequent samples from 28% of the cohort (mean 2.7 ± 1.7 days; range 1–7 days). These showed no significant differences in vitamin C status or protein carbonyl concentrations compared with baseline values (p = 0.6). Overall, the depleted vitamin C status and elevated oxidative stress observed in the patients with pneumonia indicates an enhanced requirement for the vitamin during their illness. Therefore, these patients would likely benefit from additional vitamin C supplementation to restore their blood and tissue levels to optimal. This may decrease excessive oxidative stress and aid in their recovery.
The Emerging Role of Vitamin C in the Prevention and Treatment of COVID-19
Investigation into the role of vitamin C in the prevention and treatment of pneumonia and sepsis has been underway for many decades. This research has laid a strong foundation for translation of these findings into patients with severe coronavirus disease (COVID-19). Research has indicated that patients with pneumonia and sepsis have low vitamin C status and elevated oxidative stress. Administration of vitamin C to patients with pneumonia can decrease the severity and duration of the disease. Critically ill patients with sepsis require intravenous administration of gram amounts of the vitamin to normalize plasma levels, an intervention that some studies suggest reduces mortality. The vitamin has pleiotropic physiological functions, many of which are relevant to COVID-19. These include its antioxidant, anti-inflammatory, antithrombotic and immuno-modulatory functions. Preliminary observational studies indicate low vitamin C status in critically ill patients with COVID-19. There are currently a number of randomized controlled trials (RCTs) registered globally that are assessing intravenous vitamin C monotherapy in patients with COVID-19. Since hypovitaminosis C and deficiency are common in low–middle-income settings, and many of the risk factors for vitamin C deficiency overlap with COVID-19 risk factors, it is possible that trials carried out in populations with chronic hypovitaminosis C may show greater efficacy. This is particularly relevant for the global research effort since COVID-19 is disproportionately affecting low–middle-income countries and low-income groups globally. One small trial from China has finished early and the findings are currently under peer review. There was significantly decreased mortality in the more severely ill patients who received vitamin C intervention. The upcoming findings from the larger RCTs currently underway will provide more definitive evidence. Optimization of the intervention protocols in future trials, e.g., earlier and sustained administration, is warranted to potentially improve its efficacy. Due to the excellent safety profile, low cost, and potential for rapid upscaling of production, administration of vitamin C to patients with hypovitaminosis C and severe respiratory infections, e.g., COVID-19, appears warranted.
Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes
Background Vitamin C is an essential water-soluble nutrient which cannot be synthesised or stored by humans. It is a potent antioxidant with anti-inflammatory and immune-supportive roles. Previous research has indicated that vitamin C levels are depleted in critically ill patients. In this study we have assessed plasma vitamin C concentrations in critically ill patients relative to infection status (septic shock or non-septic) and level of inflammation (C-reactive protein concentrations). Vitamin C status was also assessed relative to daily enteral and parenteral intakes to determine if standard intensive care unit (ICU) nutritional support is adequate to meet the vitamin C needs of critically ill patients. Methods Forty-four critically ill patients (24 with septic shock, 17 non-septic, 3 uncategorised) were recruited from the Christchurch Hospital Intensive Care Unit. We measured concentrations of plasma vitamin C and a pro-inflammatory biomarker (C-reactive protein) daily over 4 days and calculated patients’ daily vitamin C intake from the enteral or total parenteral nutrition they received. We compared plasma vitamin C and C-reactive protein concentrations between septic shock and non-septic patients over 4 days using a mixed effects statistical model, and we compared the vitamin C status of the critically ill patients with known vitamin C bioavailability data using a four-parameter log-logistic response model. Results Overall, the critically ill patients exhibited hypovitaminosis C (i.e., < 23 μmol/L), with a mean plasma vitamin C concentration of 17.8 ± 8.7 μmol/L; of these, one-third had vitamin C deficiency (i.e., < 11 μmol/L). Patients with hypovitaminosis C had elevated inflammation (C-reactive protein levels; P  < 0.05). The patients with septic shock had lower vitamin C concentrations and higher C-reactive protein concentrations than the non-septic patients ( P  < 0.05). Nearly 40% of the septic shock patients were deficient in vitamin C, compared with 25% of the non-septic patients. These low vitamin C levels were apparent despite receiving recommended intakes via enteral and/or parenteral nutritional therapy (mean 125 mg/d). Conclusions Critically ill patients have low vitamin C concentrations despite receiving standard ICU nutrition. Septic shock patients have significantly depleted vitamin C levels compared with non-septic patients, likely resulting from increased metabolism due to the enhanced inflammatory response observed in septic shock.
Liposomal delivery enhances absorption of vitamin C into plasma and leukocytes: a double-blind, placebo-controlled, randomized trial
Purpose L-Ascorbic acid (vitamin C) is an essential water-soluble vitamin that plays an important role in various physiological functions, including immune health. The stability of vitamin C in the gastrointestinal tract its bioavailability is limited. This study aimed to investigate if a liposomal form of vitamin C can increase absorption compared to standard vitamin C. Methods In a randomized, double-blind, placebo-controlled, crossover fashion, 19 males and 8 females ( n  = 27; 36.0 ± 5.1 years, 165.0 ± 6.9 cm, 70.6 ± 7.1 kg) ingested a single-dose of placebo (PLA), 500 mg vitamin C (VIT C), and 500 mg liposomal vitamin C (LV-VIT C, LipoVantage ® , Specnova, LLC, Tyson Corner, VA, USA). Venous blood samples were collected 0, 0.5-, 1-, 1.5-, 2-, 3-, 4-, 6-, 8-, 12-, and 24-hours after ingestion and were analyzed for plasma and leukocyte vitamin C concentration. Results VIT C and LV-VIT C demonstrated significantly greater Cmax and AUC 0 − 24 in plasma and in leukocytes compared to placebo ( p  < 0.001). Additionally, LV-VIT C had significantly higher Cmax (plasma + 27%, leukocytes + 20%, p  < 0.001) and AUC 0 − 24 (plasma + 21%, leukocytes + 8%, p  < 0.001) values as compared to VIT C. Conclusion Liposomal formulation of vitamin C increases absorption into plasma and leukocytes. Trial Registration Clinical Trials Registry - India (CTRI/2023/04/051789).
Distribution of vitamin C is tissue specific with early saturation of the brain and adrenal glands following differential oral dose regimens in guinea pigs
Vitamin C (VitC) deficiency is surprisingly common in humans even in developed parts of the world. The micronutrient has several established functions in the brain; however, the consequences of its deficiency are not well characterised. To elucidate the effects of VitC deficiency on the brain, increased knowledge about the distribution of VitC to the brain and within different brain regions after varying dietary concentrations is needed. In the present study, guinea pigs (like humans lacking the ability to synthesise VitC) were randomly divided into six groups (n 10) that received different concentrations of VitC ranging from 100 to 1500 mg/kg feed for 8 weeks, after which VitC concentrations in biological fluids and tissues were measured using HPLC. The distribution of VitC was found to be dynamic and dependent on dietary availability. Brain saturation was region specific, occurred at low dietary doses, and the dose–concentration relationship could be approximated with a three-parameter Hill equation. The correlation between plasma and brain concentrations of VitC was moderate compared with other organs, and during non-scorbutic VitC deficiency, the brain was able to maintain concentrations from about one-quarter to half of sufficient levels depending on the region, whereas concentrations in other tissues decreased to one-sixth or less. The adrenal glands have similar characteristics to the brain. The observed distribution kinetics with a low dietary dose needed for saturation and exceptional retention ability suggest that the brain and adrenal glands are high priority tissues with regard to the distribution of VitC.
Early administration of vitamin C in patients with sepsis or septic shock in emergency departments: a multicenter, double-blind, randomized controlled trial: the C-EASIE trial
Background Sepsis and septic shock are associated with high mortality and morbidity despite adequate standard care. Vitamin C deficiency is a common, potentially reversible, contributor to morbidity and mortality in sepsis. Previous studies have shown mixed and conflicting results. Our study aimed to determine the potential benefit of early administration (within 6 h after admission) of vitamin C in patients with sepsis or septic shock. Methods This was a phase 3b prospective, multicenter, double-blinded, randomized placebo-controlled trial. Participants were enrolled in the Emergency Departments of 8 hospitals throughout Belgium. Patients were randomized to receive 1.5 g of vitamin C, or matching placebo, every 6 h for 4 days. The primary outcome was the average post-baseline patient Sequential Organ Failure Assessment (SOFA) score on day 2 to 5. Key secondary outcomes were the maximum SOFA score, 28-day mortality and length of ICU and hospital stay. Results A total of 300 patients were recruited between June 4th, 2021, and August 19th, 2023. 292 patients, of which 147 were assigned to the vitamin C and 145 to the placebo group, completed the trial and were included in the analysis. The primary outcome (vitamin C, 1.98; placebo, 2.19) was 8.7% lower in the vitamin C group, but not significantly (ratio 0.91, 95% CI 0.77 to 1.08, P  = 0.30). In a planned subgroup analysis, patients with a baseline SOFA score of 6 or above had a significant lower average post-baseline SOFA score in the vitamin C group (ratio 0.76, 95% CI 0.86 to 0.99, P  = 0.042). Findings were similar in the two groups regarding secondary outcomes and adverse events, except for a lower probability of being on renal replacement therapy in the vitamin C group of the per protocol analysis (ratio 0.28, 95% CI 0.078 to 1.0, P  = 0.05). Conclusions Early treatment with vitamin C did not result in a statistically significant reduction in organ dysfunction. Therefore, this study does not support the use of vitamin C in sepsis patients. Trial registration : ClinicalTrials.gov Identifier: NCT04747795 . Registered 4 February 2021. Key Points Question Does early treatment with vitamin C lead to a less severe disease course in patients with sepsis or septic shock? Findings In this randomized clinical trial that included 292 patients, treatment with intravenous vitamin C compared to placebo did not result in a lower average post-baseline patient Sequential Organ Failure Assessment (SOFA) score on day 2 to 5 (1.98 vs 2.19), except for a subgroup of patients with a baseline SOFA score of 6 or above. Meaning Early treatment with vitamin C did not result in a significant improvement of the disease course.