Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,709
result(s) for
"Ash content"
Sort by:
The Mechanical Properties of Fly-Ash-Stabilized Sands
by
Simatupang, Minson
,
Azikin, Muhammad Thahir
,
Mustika, Wayan
in
Ash content
,
Calcium
,
Calcium aluminate
2020
The stabilization of soil through the addition of fly ash has been shown to be an effective alternative for improving the strength and stiffness of soil through the resulting chemical reactions. The chemical reaction that occurs dissociates the lime (CaO) in the fly ash, and the establishment of cementitious and pozzolanic gels (consisting of calcium silicate hydrate (CSH) gel and calcium aluminate hydrate (CAH) gel) binds the soil particles and increases the strength and stiffness of the soil. Investigations into the mechanical properties of sands stabilized with fly ash (fly-ash-stabilized sands) were conducted through a series of unconfined compressive strength (UCS) and direct shear strength tests for various fly ash percentages, curing times, grain sizes, degrees of saturation during sample preparation, and content of fines. It was found that the mechanical properties—UCS and direct shear strength (DSS)—of fly-ash-stabilized sands increased with both increasing fly ash content in the specimen and curing time, but decreased with increasing grain size, degree of saturation during sample preparation, and content of fines. The results indicated that fly-ash-stabilized sands required more than a month to attain their optimum performance with regard to binding sand particles.
Journal Article
Investigating the Influence of Froth Image Attributes on Clean Coal Ash Content: A Novel Hybrid Model Employing Deep Learning and Computer Vision Techniques for Prediction Exploration
by
Lu, Fucheng
,
Liu, Na
,
Liu, Haizeng
in
Algorithms
,
Artificial intelligence
,
Artificial neural networks
2024
In froth flotation, one of the pivotal metrics employed to evaluate the flotation efficacy is the clean ash content, given its widely acknowledged status as a paramount gauge of coal quality. Leveraging deep learning and computer vision, our study achieved the dynamic recognition of coal flotation froth, a key element for predicting and controlling the ash content in coal concentrate. A comprehensive dataset, assembled from 90 froth flotation videos, provided 16,200 images for analysis. These images revealed key froth characteristics including bubble diameter, quantity, brightness, and bursting rate. We employed Keras to build a comprehensive deep neural network model, incorporating multiple features and mixed data inputs, and subsequently trained it with a rigorous 10-fold cross-validation strategy. Our model was evaluated using robust metrics including the mean squared error, mean absolute error, and root mean squared error, demonstrating a high precision with respective values of 0.003017%, 0.053385%, and 0.042640%. With this innovative approach, our work significantly enhances the accuracy of ash content prediction and provides an important breakthrough for the intelligent advancement and efficiency of froth flotation processes in the coal industry.
Journal Article
Uniaxial Tensile Performance of PP-ECC: Effect of Curing Temperatures and Fly Ash Contents
2020
To investigate the influence of curing conditions and raw materials on the performance of engineered cement-based composites (ECCs), polypropylene fiber engineered cement-based composites (PP-ECCs) were designed and manufactured. The mathematical relationships between the fly ash content, curing temperature and PP-ECC tensile properties were explored by a uniaxial tensile test and by scanning electron microscopy. The results show the following: 1) with the increase in fly ash content and curing temperature, the ultimate tensile strain, ultimate tensile stress and tensile toughness index of the PP-ECC show a trend of first increasing and then decreasing, while the modulus of elasticity increases. 2) The optimum temperature is 20°C for the hydration reaction of the cementitious material inside the PP-ECC matrix. 3) When the fly ash content is 40% and the curing temperature is 20°C, the tensile mechanical parameters, ductility and toughness index of the PP-ECC are the best. This set of variables is recommended as a reference for PP-ECC engineering applications. 4) A mathematical relationship among the tensile strength, tensile strain and elastic modulus of the PP-ECC and coupling variables (fly ash content and curing temperature) is established.
Journal Article
Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects
2020
Biochar is a pyrogenous, organic material synthesized through pyrolysis of different biomass (plant or animal waste). The potential biochar applications include: (1) pollution remediation due to high CEC and specific surface area; (2) soil fertility improvement on the way of liming effect, enrichment in volatile matter and increase of pore volume, (3) carbon sequestration due to carbon and ash content, etc. Biochar properties are affected by several technological parameters, mainly pyrolysis temperature and feedstock kind, which differentiation can lead to products with a wide range of values of pH, specific surface area, pore volume, CEC, volatile matter, ash and carbon content. High pyrolysis temperature promotes the production of biochar with a strongly developed specific surface area, high porosity, pH as well as content of ash and carbon, but with low values of CEC and content of volatile matter. This is most likely due to significant degree of organic matter decomposition. Biochars produced from animal litter and solid waste feedstocks exhibit lower surface areas, carbon content, volatile matter and high CEC compared to biochars produced from crop residue and wood biomass, even at higher pyrolysis temperatures. The reason for this difference is considerable variation in lignin and cellulose content as well as in moisture content of biomass. The physicochemical properties of biochar determine application of this biomaterial as an additive to improve soil quality. This review succinctly presents the impact of pyrolysis temperature and the type of biomass on the physicochemical characteristics of biochar and its impact on soil fertility.
Journal Article
Hydrophysical Properties of the High-Ash Lowmoor Peat Soils
2018
The water retention curve (WRC), density, botanical composition, and ash contents were determined for high-ash lowmoor peat soils (Rheic Sapric Histosols) developing on the floodplain of the Yakhroma River (Moscow oblast) from the herb–hypnum and hypnum peat enriched in carbonates, agromineral peat soils (Rheic Drainic Sapric Histosols (Mineralic)), and peat soils developed from woody peat underlain by herb, sedge, and woody peat layers (Rheic Sapric Histosols (Lignic)). The WRC was determined by capillarimetric method in the range of water pressure from 0 to 80–90 кPa. For the studied peat soils, the WRC represents a close to linear dependence of the water content on the water pressure in semilogarithmic scale. In contrast to mineral soils, a characteristic point of the air-entry pressure is virtually absent on the WRC of peat soils. The WRC of peat largely depended on their density: denser peat samples were characterized by a higher water content at the same water pressure, which attests to the increased water retention capacity. An increase in the degree of decomposition of peat and its ash content also leads to the rise in the water retention capacity, but the effect of these factors is considerably smaller than the effect of peat density.
Journal Article
Parameter Optimization of the Radioisotope Gamma Albedo Method for Controlling Quality of Variable Composition Coals
2018
The variant of the gamma albedo method is proposed for the radioisotope express control of coal ash content, which ensures the satisfactory accuracy under conditions of variable elemental composition of coal. It is shown that the integral intensity of the secondary (scattered and fluorescent) radiation weakened by filter of certain thickness is a univocal index of coal ash content. The analytical model for the optimization of the secondary radiation filtration parameters is developed. The utility value of the weakening filter is determined as function of ash content and composition of coal.
Journal Article
Using the eight-roller mill in the purifier-less mill flow
2015
Double grinding of mill streams without intermediate sieving, i.e. the eight-roller milling system provides opportunities for significant reduction of capital cost compared to conventional wheat flour milling system. In this study the effects of using the eight-roller mill in the purifier-less mill flow were investigated. Middlings from the break system of commercial flour mill, which would be sent to the purification system, were intercepted and employed in the experiments. Milling results obtained with double grinding of middlings were compared with the results obtained by conventional system with intermediate sifting before regrinding of stock. At the same roll gap setting and under the same sieving conditions, the eight-roller system produced less flour compared to the conventional system. Results showed that the most efficient way to increase flour yield in the eight-roller milling system is to increase the upper size limit of flour by increasing the sieve aperture. This is not followed by the deterioration of flour quality as determined by ash content. Increase of the upper size limit of flour particles is followed by the decrease of the flour ash content suggesting that it is possible to implement the eight-roller mills in the purifier-less mill flow.
Journal Article
Direct observation of permafrost degradation and rapid soil carbon loss in tundra
by
Schädel, Christina
,
Celis, Gerardo
,
Webb, Elizabeth E
in
Ash content
,
Boreal ecosystems
,
Carbon
2019
Evidence suggests that 5–15% of the vast pool of soil carbon stored in northern permafrost ecosystems could be emitted as greenhouse gases by 2100 under the current path of global warming. However, direct measurements of changes in soil carbon remain scarce, largely because ground subsidence that occurs as the permafrost soils begin to thaw confounds the traditional quantification of carbon pools based on fixed depths or soil horizons. This issue is overcome when carbon is quantified in relation to a fixed ash content, which uses the relatively stable mineral component of soil as a metric for pool comparisons through time. We applied this approach to directly measure soil carbon pool changes over five years in experimentally warmed and ambient tundra ecosystems at a site in Alaska where permafrost is degrading due to climate change. We show a loss of soil carbon of 5.4% per year (95% confidence interval: 1.0, 9.5) across the site. Our results point to lateral hydrological export as a potential pathway for these surprisingly large losses. This research highlights the potential to make repeat soil carbon pool measurements at sentinel sites across the permafrost region, as this feedback to climate change may be occurring faster than previously thought.
Journal Article
Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production
by
Li, Chenlin
,
Westover, Tyler L.
,
Emerson, Rachel M.
in
09 BIOMASS FUELS
,
Analysis
,
ash content
2016
Terrestrial lignocellulosic biomass has the potential to be a carbon neutral and domestic source of fuels and chemicals. However, the innate variability of biomass resources, such as herbaceous and woody materials, and the inconsistency within a single resource due to disparate growth and harvesting conditions, presents challenges for downstream processes which often require materials that are physically and chemically consistent. Intrinsic biomass characteristics, including moisture content, carbohydrate and ash compositions, bulk density, and particle size/shape distributions are highly variable and can impact the economics of transforming biomass into value-added products. For instance, ash content increases by an order of magnitude between woody and herbaceous feedstocks (from ∼0.5 to 5 %, respectively) while lignin content drops by a factor of two (from ∼30 to 15 %, respectively). This increase in ash and reduction in lignin leads to biofuel conversion consequences, such as reduced pyrolysis oil yields for herbaceous products as compared to woody material. In this review, the sources of variability for key biomass characteristics are presented for multiple types of biomass. Additionally, this review investigates the major impacts of the variability in biomass composition on four conversion processes: fermentation, hydrothermal liquefaction, pyrolysis, and direct combustion. Finally, future research processes aimed at reducing the detrimental impacts of biomass variability on conversion to fuels and chemicals are proposed.
© 2015 Battelle Energy Alliance, LLC, contract manager for Idaho National Laboratory.
Journal Article
Effects of irradiance, temperature, nutrients, and pCO2 on the growth and biochemical composition of cultivated Ulva fenestrata
2020
Ulva fenestrata is an economically and ecologically important green algal species with a large potential in seaweed aquaculture due to its high productivity, wide environmental tolerance, as well as interesting functional and nutritional properties. Here, we performed a series of manipulative cultivation experiments in order to investigate the effects of irradiance (50, 100, and 160 μmol photons m−2 s−1), temperature (13 and 18 °C), nitrate (< 5, 150, and 500 μM), phosphate (< 1 and 50 μM), and pCO2 (200, 400, and 2500 ppm) on the relative growth rate and biochemical composition (fatty acid, protein, phenolic, ash, and biochar content) in indoor tank cultivation of Swedish U. fenestrata. High irradiance and low temperature were optimal for the growth of this northern hemisphere U. fenestrata strain, but addition of nutrients or changes in pCO2 levels were not necessary to increase growth. Low irradiance resulted in the highest fatty acid, protein, and phenolic content, while low temperature had a negative effect on the fatty acid content but a positive effect on the protein content. Addition of nutrients (especially nitrate) increased the fatty acid, protein, and phenolic content. High nitrate levels decreased the total ash content of the seaweeds. The char content of the seaweeds did not change in response to any of the manipulated factors, and the only significant effect of changes in pCO2 was a negative relationship with phenolic content. We conclude that the optimal cultivation conditions for Swedish U. fenestrata are dependent on the desired biomass traits (biomass yield or biochemical composition).
Journal Article