Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,338
result(s) for
"Aspartame"
Sort by:
Aspartame carcinogenic potential revealed through network toxicology and molecular docking insights
2024
The research employed network toxicology and molecular docking techniques to systematically examine the potential carcinogenic effects and mechanisms of aspartame (
l
-α-aspartyl-
l
-phenylalanine methyl ester). Aspartame, a commonly used synthetic sweetener, is widely applied in foods and beverages globally. In recent years, its safety issues, particularly the potential carcinogenic risk, have garnered widespread attention. The study first constructed an interaction network map of aspartame with gastric cancer targets using network toxicology methods and identified key targets and pathways. Preliminary validation was conducted through microarray data analysis and survival analysis, and molecular docking techniques were employed to further examine the binding affinity and modes of action of aspartame with key proteins. The findings suggest that aspartame has the potential to impact various cancer-related proteins, potentially raising the likelihood of cellular carcinogenesis by interfering with biomolecular function. Furthermore, the study found that the action patterns and pathways of aspartame-related targets are like the mechanisms of known carcinogenic pathways, further supporting the scientific hypothesis of its potential carcinogenicity. However, given the complexity of the in vivo environment, we also emphasize the necessity of validating these molecular-level findings in actual biological systems. The study introduces a fresh scientific method for evaluating the safety of food enhancers and provides a theoretical foundation for shaping public health regulations.
Journal Article
Aspartame and ischemic stroke: unraveling the molecular link through network toxicology and molecular docking analysis
2025
Aspartame, a widely used artificial sweetener, remains controversial due to neurotoxic risks from its metabolites—phenylalanine, aspartic acid, and methanol. While epidemiological studies link artificial sweeteners to cerebrovascular disease, the molecular mechanisms connecting aspartame to ischemic stroke are unclear. This study integrates network toxicology and molecular docking to identify key targets and pathways. Potential aspartame targets were predicted using STITCH, SwissTargetPrediction, and SEA databases, while ischemic stroke-related genes were retrieved from GeneCards, OMIM, and TTD. Venn analysis identified 201 overlapping genes, with IL1B, MMP9, SRC, AGT, and TNF as core targets. GO/KEGG enrichment revealed their roles in the renin-angiotensin system, complement/coagulation cascades, and inflammatory pathways. Molecular docking demonstrated strong binding affinities between aspartame and these targets, suggesting direct modulation. Our integrated analysis suggests that aspartame may contribute to ischemic brain injury through multi-target interactions, potentially disrupting inflammatory responses and vascular homeostasis. This study provides preliminary systematic insights into the potential neurotoxicity mechanisms of aspartame, offering insights for food additive safety evaluation and stroke prevention. Further validation is required to clarify metabolite synergies and dose–response relationships.
Journal Article
Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake
2017
Background:
Substituting sweeteners with non-nutritive sweeteners (NNS) may aid in glycaemic control and body weight management. Limited studies have investigated energy compensation, glycaemic and insulinaemic responses to artificial and natural NNS.
Objectives:
This study compared the effects of consuming NNS (artificial versus natural) and sucrose (65 g) on energy intake, blood glucose and insulin responses.
Methods:
Thirty healthy male subjects took part in this randomised, crossover study with four treatments: aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages. On each test day, participants were asked to consume a standardised breakfast in the morning, and they were provided with test beverage as a preload in mid-morning and
ad libitum
lunch was provided an hour after test beverage consumption. Blood glucose and insulin concentrations were measured every 15 min within the first hour of preload consumption and every 30 min for the subsequent 2 h. Participants left the study site 3 h after preload consumption and completed a food diary for the rest of the day.
Results:
Ad libitum
lunch intake was significantly higher for the NNS treatments compared with sucrose (
P
=0.010). The energy 'saved' from replacing sucrose with NNS was fully compensated for at subsequent meals; hence, no difference in total daily energy intake was found between the treatments (
P
=0.831). The sucrose-sweetened beverage led to large spikes in blood glucose and insulin responses within the first hour, whereas these responses were higher for all three NNS beverages following the test lunch. Thus, there were no differences in total area under the curve (AUC) for glucose (
P
=0.960) and insulin (
P
=0.216) over 3 h between the four test beverages.
Conclusions:
The consumption of calorie-free beverages sweetened with artificial and natural NNS have minimal influences on total daily energy intake, postprandial glucose and insulin compared with a sucrose-sweetened beverage.
Journal Article
Aspartame Sensitivity? A Double Blind Randomised Crossover Study
by
Atkin, Stephen L.
,
Gooderham, Nigel J.
,
Pechlivanis, Alexandros
in
Acute effects
,
Adult
,
Aged
2015
Aspartame is a commonly used intense artificial sweetener, being approximately 200 times sweeter than sucrose. There have been concerns over aspartame since approval in the 1980s including a large anecdotal database reporting severe symptoms. The objective of this study was to compare the acute symptom effects of aspartame to a control preparation.
This was a double-blind randomized cross over study conducted in a clinical research unit in United Kingdom. Forty-eight individual who has self reported sensitivity to aspartame were compared to 48 age and gender matched aspartame non-sensitive individuals. They were given aspartame (100mg)-containing or control snack bars randomly at least 7 days apart. The main outcome measures were acute effects of aspartame measured using repeated ratings of 14 symptoms, biochemistry and metabonomics.
Aspartame sensitive and non-sensitive participants differed psychologically at baseline in handling feelings and perceived stress. Sensitive participants had higher triglycerides (2.05 ± 1.44 vs. 1.26 ± 0.84mmol/L; p value 0.008) and lower HDL-C (1.16 ± 0.34 vs. 1.35 ± 0.54 mmol/L; p value 0.04), reflected in 1H NMR serum analysis that showed differences in the baseline lipid content between the two groups. Urine metabonomic studies showed no significant differences. None of the rated symptoms differed between aspartame and control bars, or between sensitive and control participants. However, aspartame sensitive participants rated more symptoms particularly in the first test session, whether this was placebo or control. Aspartame and control bars affected GLP-1, GIP, tyrosine and phenylalanine levels equally in both aspartame sensitive and non-sensitive subjects.
Using a comprehensive battery of psychological tests, biochemistry and state of the art metabonomics there was no evidence of any acute adverse responses to aspartame. This independent study gives reassurance to both regulatory bodies and the public that acute ingestion of aspartame does not have any detectable psychological or metabolic effects in humans.
ISRCTN Registry ISRCTN39650237.
Journal Article
The Effects of Non-Nutritive Artificial Sweeteners, Aspartame and Sucralose, on the Gut Microbiome in Healthy Adults: Secondary Outcomes of a Randomized Double-Blinded Crossover Clinical Trial
2020
Non-nutritive artificial sweeteners (NNSs) may have the ability to change the gut microbiota, which could potentially alter glucose metabolism. This study aimed to determine the effect of sucralose and aspartame consumption on gut microbiota composition using realistic doses of NNSs. Seventeen healthy participants between the ages of 18 and 45 years who had a body mass index (BMI) of 20–25 were selected. They undertook two 14-day treatment periods separated by a four-week washout period. The sweeteners consumed by each participant consisted of a standardized dose of 14% (0.425 g) of the acceptable daily intake (ADI) for aspartame and 20% (0.136 g) of the ADI for sucralose. Faecal samples collected before and after treatments were analysed for microbiome and short-chain fatty acids (SCFAs). There were no differences in the median relative proportions of the most abundant bacterial taxa (family and genus) before and after treatments with both NNSs. The microbiota community structure also did not show any obvious differences. There were no differences in faecal SCFAs following the consumption of the NNSs. These findings suggest that daily repeated consumption of pure aspartame or sucralose in doses reflective of typical high consumption have minimal effect on gut microbiota composition or SCFA production.
Journal Article
Lack of Biological Plausibility and Major Methodological Issues Cast Doubt on the Association between Aspartame and Autism. Comment on Fowler et al. Daily Early-Life Exposures to Diet Soda and Aspartame Are Associated with Autism in Males: A Case-Control Study. INutrients/I 2023, I15/I, 3772
by
Khan, Tauseef Ahmad
,
Chiavaroli, Laura
,
Magnuson, Bernadene A
in
Aspartame
,
Autism
,
Type 2 diabetes
2024
Journal Article
Development of Thin Film Microextraction with Natural Deep Eutectic Solvents as ‘Eutectosorbents’ for Preconcentration of Popular Sweeteners and Preservatives from Functional Beverages and Flavoured Waters
2024
An eco-friendly method for the determination of sweeteners (aspartame, acesulfame-K) and preservatives (benzoic acid, sorbic acid, methylparaben, ethylparaben) in functional beverages and flavoured waters using thin film microextraction (TFME) and high-performance liquid chromatography with UV detection (HPLC-UV) was proposed. A series of fourteen green and renewable solidified natural deep eutectic solvents (NADESs) were prepared and tested as ‘eutectosorbents’ in TFME for the first time. In the proposed method, the NADES containing acetylcholine chloride and 1-docosanol at a 1:3 molar ratio was finally chosen to coat a support. Four factors, i.e., the mass of the NADES, pH of the samples, extraction time, and desorption time, were tested in the central composite design to select the optimal TFME conditions. Limits of detection were equal to 0.022 µg mL−1 for aspartame, 0.020 µg mL−1 for acesulfame-K, 0.018 µg mL−1 for benzoic acid, 0.026 µg mL−1 for sorbic acid, 0.013 µg mL−1 for methylparaben, and 0.011 µg mL−1 for ethylparaben. Satisfactory extraction recoveries between 82% and 96% were achieved with RSDs lower than 6.1% (intra-day) and 7.4% (inter-day). The proposed ‘eutectosorbent’ presented good stability that enabled effective extractions for 16 cycles with recovery of at least 77%. The proposed NADES-TFME/HPLC-UV method is highly sensitive and selective. However, the use of a solid NADES as a sorbent, synthesized without by-products, without the need for purification, and with good stability on a support with the possibility of reusability increases the ecological benefit of this method. The greenness aspect of the method was evaluated using the Complex modified Green Analytical Procedure Index protocol and is equal to 84/100.
Journal Article