Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
10,076 result(s) for "Assemblage Structure"
Sort by:
Ant assemblages have darker and larger members in cold environments
AIM : In ectotherms, the colour of an individual’s cuticle may have important thermoregulatory and protective consequences. In cool environments, ectotherms should be darker, to maximize heat gain, and larger, to minimize heat loss. Dark colours should also predominate under high UV-B conditions because melanin offers protection. We test these predictions in ants (Hymenoptera: Formicidae) across space and through time based on a new, spatially and temporally explicit, global-scale combination of assemblage-level and environmental data. LOCATION : Africa, Australia and South America. METHODS : We sampled ant assemblages (n5274) along 14 elevational transects on three continents. Individual assemblages ranged from 250 to 3000 m a.s.l. (minimum to maximum range in summer temperature of 0.5–35 8C). We used mixed-effects models to explain variation in assemblage cuticle lightness. Explanatory variables were average assemblage body size, temperature and UVB irradiation. Annual temporal changes in lightness were examined for a subset of the data. RESULTS : Assemblages with large average body sizes were darker in colour than those with small body sizes. Assemblages became lighter in colour with increasing temperature, but darkened again at the highest temperatures when there were high levels of UV-B. Through time, temperature and body size explained variation in lightness. Both the spatial and temporal models explained c. 50% of the variation in lightness. MAIN CONCLUSIONS : Our results are consistent with the thermal melanism hypothesis, and demonstrate the importance of considering body size and UVB radiation exposure in explaining the colour of insect cuticle. Crucially, this finding is at the assemblage level. Consequently, the relative abundances and identities of ant species that are present in an assemblage can change in accordance with environmental conditions over elevation, latitude and relatively short time spans. These findings suggest that there are important constraints on how ectotherm assemblages may be able to respond to rapidly changing environmental conditions.
Relationships between forest cover and fish diversity in the Amazon River floodplain
1. Habitat degradation leads to biodiversity loss and concomitant changes in ecosystem processes. Tropical river floodplains are highly threatened by land cover changes and support high biodiversity and important ecosystem services, but the extent to which changes in floodplain land cover affect fish biodiversity remains unknown. 2. We combined fish and environmental data collected in situ and satellite-mapped landscape features to evaluate how fish species with different ecological strategies and assemblage structures respond to deforestation in floodplains of the Amazon River. We surveyed 462 floodplain habitats distributed along a gradient of land cover, from largely forested to severely deforested. Rather than analyse only taxonomic metrics, we employed an integrative approach that simultaneously considers different aspects of fish biodiversity (i.e. β diversity and taxonomic and functional assemblage structure) to facilitate mechanistic interpretations of the influence of land cover. 3. Spatial patterns of fish biodiversity in the Amazon River floodplain were strongly associated with forest cover as well as local environmental conditions linked to landscape gradients. Several species and functional groups defined by life-history, feeding, swimming/microhabitat-use strategies were positively associated with forest cover. Other species, including some that would usually be considered habitat generalists and species directly dependent on autochthonous resources (e.g. planktivores), were most common in areas dominated by herbaceous vegetation or open water habitats associated with the opposite extreme of the forest cover gradient. β diversity and the degree of uniqueness of species combinations within habitats were also positively associated with forest cover. 4. Synthesis and applications. Our results demonstrating that spatial patterns of fish biodiversity are associated with forest cover, indicate that deforestation of floodplains of the Amazon River results in spatial homogenization of fish assemblages and reduced functional diversity at both local and regional scales. Floodplains world-wide have undergone major land cover changes, with forest loss projected to increase during the next decades. Conserving fish diversity in these ecosystems requires protecting mosaics of both aquatic habitats and floodplain vegetation, with sufficient forest cover being critically important.
Restoring native fish assemblages to a regulated California stream using the natural flow regime concept
We examined the response of fishes to establishment of a new flow regime in lower Putah Creek, a regulated stream in California, USA. The new flow regime was designed to mimic the seasonal timing of natural increases and decreases in stream flow. We monitored fish assemblages annually at six sample sites distributed over ∼30 km of stream for eight years before and nine years after the new flow regime was implemented. Our purpose was to determine whether more natural stream flow patterns would reestablish native fishes and reduce the abundances of alien (nonnative) fishes. At the onset of our study, native fishes were constrained to habitat immediately (<1 km) below the diversion dam, and alien species were numerically dominant at all downstream sample sites. Following implementation of the new flow regime, native fishes regained dominance across more than 20 km of lower Putah Creek. We propose that the expansion of native fishes was facilitated by creation of favorable spawning and rearing conditions (e.g., elevated springtime flows), cooler water temperatures, maintenance of lotic (flowing) conditions over the length of the creek, and displacement of alien species by naturally occurring high-discharge events. Importantly, restoration of native fishes was achieved by manipulating stream flows at biologically important times of the year and only required a small increase in the total volume of water delivered downstream (i.e., water that was not diverted for other uses) during most water years. Our results validate that natural flow regimes can be used to effectively manipulate and manage fish assemblages in regulated rivers.
Structural complexity mediates functional structure of reef fish assemblages among coral habitats
Coral community composition varies considerably due to both environmental conditions and disturbance histories. However, the extent to which coral composition influences associated fish assemblages remains largely unknown. Here an ecological trait-based ordination analysis was used to compare functional richness (range of unique trait combinations), functional evenness (weighted distribution of fishes with shared traits), and functional divergence (proportion of total abundance supported by species with traits on the periphery of functional space) of fish assemblages among six distinct coral habitats. Despite no significant variation in species richness among habitats, there were differences in the functional richness and functional divergence, but not functional evenness, of fish assemblages among habitats. Structural complexity of coral assemblages was the best predictor of the differences in functional richness and divergence among habitats. Functional richness of fish assemblages was highest in branching Porites habitats, lowest in Pocillopora and soft coral habitats, and intermediate in massive Porites , staghorn Acropora , and mixed coral habitats. Massive and branching Porites habitats displayed greater functional divergence in fish assemblages than the Pocillopora habitat, whilst the remaining habitats were intermediate. Differences in functional richness and divergence were largely driven by the presence of small schooling planktivores in the massive and branching Porites habitats. These results indicate that differential structural complexity among coral communities may act as an environmental filter, affecting the distribution and abundance of associated species traits, particularly those of small-bodied schooling fishes.
Restoring native fish assemblages to a regulated California stream using the natural flow regime concept
We examined the response of fishes to establishment of a new flow regime in lower Putah Creek, a regulated stream in California, USA. The new flow regime was designed to mimic the seasonal timing of natural increases and decreases in stream flow. We monitored fish assemblages annually at six sample sites distributed over ∼30 km of stream for eight years before and nine years after the new flow regime was implemented. Our purpose was to determine whether more natural stream flow patterns would reestablish native fishes and reduce the abundances of alien (nonnative) fishes. At the onset of our study, native fishes were constrained to habitat immediately (<1 km) below the diversion dam, and alien species were numerically dominant at all downstream sample sites. Following implementation of the new flow regime, native fishes regained dominance across more than 20 km of lower Putah Creek. We propose that the expansion of native fishes was facilitated by creation of favorable spawning and rearing conditions (e.g., elevated springtime flows), cooler water temperatures, maintenance of lotic (flowing) conditions over the length of the creek, and displacement of alien species by naturally occurring high-discharge events. Importantly, restoration of native fishes was achieved by manipulating stream flows at biologically important times of the year and only required a small increase in the total volume of water delivered downstream (i.e., water that was not diverted for other uses) during most water years. Our results validate that natural flow regimes can be used to effectively manipulate and manage fish assemblages in regulated rivers.
Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States
Beta diversity, the spatial or temporal variability of species composition, is a key concept in community ecology. However, our ability to predict the relative importance of the main drivers of beta diversity (e.g., environmental heterogeneity, dispersal limitation, and environmental productivity) remains limited. Using a comprehensive data set on stream invertebrate assemblages across the continental United States, we found a hump-shaped relationship between beta diversity and within-ecoregion nutrient concentrations. Within-ecoregion compositional dissimilarity matrices were mainly related to environmental distances in most of the 30 ecoregions analyzed, suggesting a stronger role for species-sorting than for spatial processes. The strength of these relationships varied considerably among ecoregions, but they were unrelated to within-ecoregion environmental heterogeneity or spatial extent. Instead, we detected a negative correlation between the strength of species sorting and nutrient concentrations. We suggest that eutrophication is a major mechanism disassembling invertebrate assemblages in streams at a continental scale.
Climate mediates the effects of disturbance on ant assemblage structure
Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages , we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 98C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.
Patterns of landscape and assemblage structure along a latitudinal gradient in ocean climate
The Portuguese coast has overlapping distributions of species of both boreal and Lusitanian origins; a large number of cold- and warm-water species have their southern or northern distributional range edges here. A latitudinal gradient in ocean climate, particularly sea surface temperature (SST) and primary production, has been described along this coast. Here, we took advantage of this gradient in ocean climate to explore affinities in the biogenic landscape structure of subtidal shallow reefs (the abundance of habitat patches), as well as in the assemblage structure of macroalgae and associated fishes, between each of 3 regions: Viana do Castelo (41.5° N), Peniche (39.2° N) and Sines (37.8° N). Five reefs were sampled to determine the abundance of biogenic habitats and the assemblage structure of macroalgae and fishes in each region. The structure of the landscape, and of macroalgal and fish assemblages, differed between Viana do Castelo and Peniche and between Viana do Castelo and Sines, but not between Peniche and Sines. Viana do Castelo was the only region with conspicuous kelp forests, while Peniche and Sines were dominated by patches of foliose turf-forming and filamentous algae. Our study revealed an abrupt macroecological change from northern Portugal to central and southern Portugal, suggesting a possible biogeographical reconfiguration and recognition of a wider transitional area from the Atlantic into Mediterranean waters.
Shift in seagrass food web structure over decades is linked to overfishing
Empirical field studies in seagrass have revealed that overgrowth by filamentous algae which reduces seagrass growth can be explained by a top-down cascading effect caused by declines in top predators, which is enforced by eutrophication. On the Swedish west coast, 60% of the seagrass has disappeared since the 1980s. We hypothesised that overfishing, responsible for a >90% decline in the cod stock, and the 4 to 8 times increase in nutrient load since the 1930s have altered the seagrass structure and function during recent decades. We used quantitative samples from the 1980s and 2000s and analysed the trends in abundance of the 4 feeding guilds: top predatory fish, intermediate predatory fish, crustacean omnivores and mesoherbivores. Since the 1980s, the commercial catch of gadoids on the Swedish west coast has decreased by >90%, and here we found that the biomass of top predators (gadoids and trout) that forage in seagrass has decreased by approximately 80%. In contrast, the biomass of intermediate predatory fish (gobids and sticklebacks) has increased 8 times during summer and 11 times during autumn, while mesoherbivores (idoteids and gammarids >7 mm) have more or less disappeared from the seagrass bed. We thus found clear evidence that a shift in seagrass food web structure has taken place over the last 3 decades. Combining these findings with our recent empirical results from field cage experiments in the Skagerrak seagrass, where we manipulate top-down and bottom-up regulation, we conclude that lack of grazers in concert with eutrophication most likely contributed to the overgrowth by filamentous algae and disappearance of the seagrass on the Swedish west coast.
Effects of environmental factors on reef fish assemblage structure in the southeastern US Atlantic
Environmental variation influences fish assemblage structure; however, fish assemblage composition shifts due to natural or anthropogenic stressors have been observed in marine ecosystems worldwide, altering ecosystem structure and function, and fisheries sustainability. Previous research in waters off North and South Carolina (USA) was limited in scope and repeatability or did not quantify fish assemblages at a scale suitable for monitoring composition shifts. Concurrent chevron traps, underwater video, and environmental data from an annual fishery-independent survey were used to characterize the environment and enumerate demersal reef fishes caught in the traps, and priority fish species observed in video in depths ∼15–110 m. Multivariate analyses detected assemblage patterns and environmental influences. An 8-variable (distance to shelf edge, depth, consolidated substrate size, latitude, percent biotic cover, temperature, undercut height, biotic class) model predicted assemblages, while 4 variables explained the greatest variation (distance to shelf edge [19%], depth [15%], consolidated substrate vertical relief [4%], size [4%]). The largest number of discriminator species occurred in mid- to outer shelf areas with greater substrate complexity (i.e. increasing substrate size and relief). Assemblages dominated by Centropristis striata at depths (∼15–40 m) with little substrate complexity transitioned towards assemblages dominated by Pagrus pagrus, higher prevalence of larger-bodied predators, and invasive Pterois spp. at depths (∼40–110 m) with greater substrate complexity. Understanding baseline assemblage characteristics and natural drivers of variability in fish assemblage structure is vital to conservation and management efforts that monitor changes in population abundance, the presence/absence of key species, and stressor-induced modifications of local assemblages, which are all measures of ecological health that underpin comprehensive assessments and management.