Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
2,455,404
result(s) for
"Association"
Sort by:
Genetic studies of body mass index yield new insights for obesity biology
by
Kumari, Meena
,
Kaplan, Robert C.
,
Fox, Caroline S.
in
631/208/205/2138
,
Adipogenesis - genetics
,
Adiposity - genetics
2015
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (
P
< 5 × 10
−8
), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
A genome-wide association study and Metabochip meta-analysis of body mass index (BMI) detects 97 BMI-associated loci, of which 56 were novel, and many loci have effects on other metabolic phenotypes; pathway analyses implicate the central nervous system in obesity susceptibility and new pathways such as those related to synaptic function, energy metabolism, lipid biology and adipogenesis.
Genetic correlates of obesity
In the second of two Articles in this issue from the GIANT Consortium, Elizabeth Speliotes and collegues conducted a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), commonly used to define obesity and assess adiposity, to find 97 BMI-associated loci, of which 56 were novel. Many of these loci have significant effects on other metabolic phenotypes. The 97 loci account for about 2.7% of BMI variation, and genome-wide estimates suggest common variation accounts for more than 20% of BMI variation. Pathway analyses implicate the central nervous system in obesity susceptibility including synaptic function, glutamate signaling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Journal Article
Association analyses based on false discovery rate implicate new loci for coronary artery disease
2017
Hugh Watkins and colleagues meta-analyze data from the UK Biobank along with recent genome-wide association studies for coronary artery disease. They identify 13 new loci that were genome-wide significant and 243 loci at a 5% false discovery rate.
Genome-wide association studies (GWAS) in coronary artery disease (CAD) had identified 66 loci at 'genome-wide significance' (
P
< 5 × 10
−8
) at the time of this analysis, but a much larger number of putative loci at a false discovery rate (FDR) of 5% (refs.
1
,
2
,
3
,
4
). Here we leverage an interim release of UK Biobank (UKBB) data to evaluate the validity of the FDR approach. We tested a CAD phenotype inclusive of angina (SOFT;
n
cases
= 10,801) as well as a stricter definition without angina (HARD;
n
cases
= 6,482) and selected cases with the former phenotype to conduct a meta-analysis using the two most recent CAD GWAS
2
,
3
. This approach identified 13 new loci at genome-wide significance, 12 of which were on our previous list of loci meeting the 5% FDR threshold
2
, thus providing strong support that the remaining loci identified by FDR represent genuine signals. The 304 independent variants associated at 5% FDR in this study explain 21.2% of CAD heritability and identify 243 loci that implicate pathways in blood vessel morphogenesis as well as lipid metabolism, nitric oxide signaling and inflammation.
Journal Article
The car race
by
Bach, Rachel, author
in
NASCAR (Association) Juvenile literature.
,
NASCAR (Association)
,
Stock car racing Juvenile literature.
2017
\"A photo-illustrated book for beginning readers that tells the story of a NASCAR race. Who will win? Includes a photo diagram\"-- Provided by publisher.
Mapping genomic loci implicates genes and synaptic biology in schizophrenia
by
Marder, Stephen R.
,
Cordeiro, Quirino
,
Terao, Chikashi
in
45/43
,
631/208/205/2138
,
631/378/1689
2022
Schizophrenia has a heritability of 60–80%
1
, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit
GRIN2A
and transcription factor
SP4
, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.
A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.
Journal Article
The power of genetic diversity in genome-wide association studies of lipids
2021
Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use
1
. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels
2
, heart disease remains the leading cause of death worldwide
3
. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS
4
–
23
have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns
24
. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine
25
, we anticipate that increased diversity of participants will lead to more accurate and equitable
26
application of polygenic scores in clinical practice.
A genome-wide association meta-analysis study of blood lipid levels in roughly 1.6 million individuals demonstrates the gain of power attained when diverse ancestries are included to improve fine-mapping and polygenic score generation, with gains in locus discovery related to sample size.
Journal Article