Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
611
result(s) for
"Astronomical transits"
Sort by:
The K2 Mission: Characterization and Early Results
by
Haas, Michael
,
Caldwell, Doug
,
Barclay, Thomas
in
Astronomical magnitude
,
Astronomical transits
,
Extrasolar planet detection
2014
The K2 mission will make use of the Kepler spacecraft and its assets to expand upon Kepler's groundbreaking discoveries in the fields of exoplanets and astrophysics through new and exciting observations. K2 will use an innovative way of operating the spacecraft to observe target fields along the ecliptic for the next 2-3 years. Early science commissioning observations have shown an estimated photometric precision near 400 ppm in a single 30 minute observation, and a 6-hr photometric precision of 80 ppm (both at V = 12). The K2 mission offers long-term, simultaneous optical observation of thousands of objects at a precision far better than is achievable from ground-based telescopes. Ecliptic fields will be observed for approximately 75 days enabling a unique exoplanet survey which fills the gaps in duration and sensitivity between the Kepler and TESS missions, and offers pre-launch exoplanet target identification for JWST transit spectroscopy. Astrophysics observations with K2 will include studies of young open clusters, bright stars, galaxies, supernovae, and asteroseismology.
Journal Article
Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST)
by
Lunine, Jonathan
,
Hines, Dean
,
Vasisht, Gautam
in
Astronomical transits
,
Conference Highlights
,
Eclipses
2014
This article summarizes a workshop held on March, 2014, on the potential of the James Webb Space Telescope (JWST) to revolutionize our knowledge of the physical properties of exoplanets through transit observations. JWST's unique combination of high sensitivity and broad wavelength coverage will enable the accurate measurement of transits with high signal-to-noise ratio (S/N). Most importantly, JWST spectroscopy will investigate planetary atmospheres to determine atomic and molecular compositions, to probe vertical and horizontal structure, and to follow dynamical evolution, i.e., exoplanet weather. JWST will sample a diverse population of planets of varying masses and densities in a wide variety of environments characterized by a range of host star masses and metallicities, orbital semi-major axes, and eccentricities. A broad program of exoplanet science could use a substantial fraction of the overall JWST mission.
Journal Article
Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates
by
Siverd, Robert
,
Gaudi, B. Scott
,
Eastman, Jason
in
Approximation
,
Astronomical objects
,
Astronomical transits
2010
As the quality and quantity of astrophysical data continue to improve, the precision with which certain astrophysical events can be timed becomes limited not by the data themselves, but by the manner, standard, and uniformity with which time itself is referenced. While some areas of astronomy (most notably pulsar studies) have required absolute time stamps with precisions of considerably better than 1 minute for many decades, recently new areas have crossed into this regime. In particular, in the exoplanet community, we have found that the (typically unspecified) time standards adopted by various groups can differ by as much as a minute. Left uncorrected, this ambiguity may be mistaken for transit timing variations and bias eccentricity measurements. We argue that, since the commonly-used Julian Date, as well as its heliocentric and barycentric counterparts, can be specified in several time standards, it is imperative that their time standards always be reported when accuracies of 1 minute are required. We summarize the rationale behind our recommendation to quote the site arrival time, in addition to usingBJDTDB
BJD
TDB
, the Barycentric Julian Date in the Barycentric Dynamical Time standard for any astrophysical event. TheBJDTDB
BJD
TDB
is the most practical absolute time stamp for extraterrestrial phenomena, and is ultimately limited by the properties of the target system. We compile a general summary of factors that must be considered in order to achieve timing precisions ranging from 15 minutes to 1 µs. Finally, we provide software tools that, in principal, allow one to calculateBJDTDB
BJD
TDB
to a precision of 1 μs for any target from anywhere on Earth or from any spacecraft.
Journal Article
Kepler-16: A Transiting Circumbinary Planet
by
Winn, Joshua N.
,
Ford, Eric B.
,
Borucki, William J.
in
Astronomical transits
,
Astronomy
,
Average linear density
2011
We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.
Journal Article
Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities
by
Ford, Eric B.
,
Koch, David G.
,
Winn, Joshua N.
in
Astronomical research
,
Astronomical transits
,
Astronomy
2012
In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky \"super-Earth,\" whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.
Journal Article
Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations
by
Fressin, Francois
,
Steffen, Jason H
,
Hartman, Joel D
in
Astronomical photometry
,
Astronomical transits
,
Astronomy
2010
The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2:1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth-size planet candidate with a period of 1.6 days.
Journal Article
Exploring exoplanet populations with NASA’s Kepler Mission
The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration’s long-term goal of finding habitable environments beyond the solar system.
Journal Article
Stellar Spin-Orbit Misalignment in a Multiplanet System
by
Barbieri, Mauro
,
Ford, Eric B.
,
Winn, Joshua N.
in
Astronomical transits
,
Astronomy
,
Astrophysics
2013
Stars hosting hot Jupiters are often observed to have high obliquities, whereas stars with multiple coplanar planets have been seen to have low obliquities. This has been interpreted as evidence that hot-Jupiter formation is linked to dynamical disruption, as opposed to planet migration through a protoplanetary disk. We used asteroseismology to measure a large obliquity for Kepler-56, a red giant star hosting two transiting coplanar planets. These observations show that spin-orbit misalignments are not confined to hot-Jupiter systems. Misalignments in a broader class of systems had been predicted as a consequence of torques from wide-orbiting companions, and indeed radial velocity measurements revealed a third companion in a wide orbit in the Kepler-56 system.
Journal Article
The Kilodegree Extremely Little Telescope (KELT): A Small Robotic Telescope for Large‐Area Synoptic Surveys
by
Trueblood, Mark
,
Pepper, Joshua
,
DePoy, D. L.
in
Astronomical magnitude
,
Astronomical photometry
,
Astronomical transits
2007
The Kilodegree Extremely Little Telescope (KELT) project is a survey for planetary transits of bright stars. It consists of a small‐aperture, wide‐field automated telescope located at Winer Observatory near Sonoita, Arizona. The telescope surveys a set of 26° × 26° fields that together cover about 25% of the northern sky, and targets stars in the range of
\\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $8< V< 10$ \\end{document}
mag, searching for transits by close‐in Jupiters. This paper describes the system hardware and software and discusses the quality of the observations. We show that KELT is able to achieve the necessary photometric precision to detect planetary transits around solar‐type main‐sequence stars.
Journal Article
An Earth-Sized Planet in the Habitable Zone of a Cool Star
by
Kane, Stephen R.
,
Ford, Eric B.
,
Quarles, Billy
in
Astronomical transits
,
Astrophysics
,
Earth
2014
The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.
Journal Article