Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
151 result(s) for "Astronomy America History."
Sort by:
Measuring the new world
Prior to 1735, South America was largely terra incognita to many Europeans. But that year, the Paris Academy of Sciences sent a joint French and Spanish mission to the Spanish American province of Quito (in present-day Ecuador) to study the curvature of the Earth at the Equator—an expedition that would put South America on the map and in the minds of Europeans for centuries to come. Equipped with quadrants and telescopes, the mission’s participants referred to the transfer of scientific knowledge from Europe to the Andes as a “sacred fire” passing mysteriously through European astronomical instruments to curious observers in South America. By looking at the social and material traces of this expedition, Measuring the New World examines the transatlantic flow of knowledge in reverse—from West to East. Through ephemeral monuments and geographical maps, from the Andes to the Amazon River, the book explores how the social and cultural worlds of South America contributed to the production of European scientific knowledge during the Enlightenment. Neil Safier uses the notebooks of traveling philosophers, including Charles-Marie de La Condamine and others, as well as maps and specimens from the expedition, to place this particular scientific endeavor in the larger context of early modern print culture and the emerging intellectual category of scientist as author.
Native America. Season 2, episode 1, New worlds
What was the New World like before it encountered the Old? Now, scientific expeditions in North and South America are woven with drama recreations to investigate and present a new vision of America, and how the clash of civilizations forever altered the history of our world. Episode 1: Native innovators lead a revolution in music, building, and space exploration. From the surface of Mars to the New York City hip hop scene to the Pine Ridge Reservation, Native traditions are transforming life on Earth and other worlds.
Einstein's Jury
Einstein's Juryis the dramatic story of how astronomers in Germany, England, and America competed to test Einstein's developing theory of relativity. Weaving a rich narrative based on extensive archival research, Jeffrey Crelinsten shows how these early scientific debates shaped cultural attitudes we hold today. The book examines Einstein's theory of general relativity through the eyes of astronomers, many of whom were not convinced of the legitimacy of Einstein's startling breakthrough. These were individuals with international reputations to uphold and benefactors and shareholders to please, yet few of them understood the new theory coming from the pen of Germany's up-and-coming theoretical physicist, Albert Einstein. Some tried to test his theory early in its development but got no results. Others--through toil and hardship, great expense, and perseverance--concluded that it was wrong. A tale of international competition and intrigue,Einstein's Jurybrims with detail gleaned from Crelinsten's far-reaching inquiry into the history and development of relativity. Crelinsten concludes that the well-known British eclipse expedition of 1919 that made Einstein famous had less to do with the scientific acceptance of his theory than with his burgeoning public fame. It was not until the 1920s, when the center of gravity of astronomy and physics shifted from Europe to America, that the work of prestigious American observatories legitimized Einstein's work. As Crelinsten so expertly shows, the glow that now surrounds the famous scientist had its beginnings in these early debates among professional scientists working in the glare of the public spotlight.
The legacy of the extinct Neotropical megafauna on plants and biomes
Large mammal herbivores are important drivers of plant evolution and vegetation patterns, but the extent to which plant trait and ecosystem geography currently reflect the historical distribution of extinct megafauna is unknown. We address this question for South and Central America (Neotropical biogeographic realm) by compiling data on plant defence traits, climate, soil, and fire, as well as on the historical distribution of extinct megafauna and extant mammal herbivores. We show that historical mammal herbivory, especially by extinct megafauna, and soil fertility explain substantial variability in wood density, leaf size, spines and latex. We also identified three distinct regions (''antiherbiomes''), differing in plant defences, environmental conditions, and megafauna history. These patterns largely matched those observed in African ecosystems, where abundant megafauna still roams, and suggest that some ecoregions experienced savanna-to-forest shifts following megafauna extinctions. Here, we show that extinct megafauna left a significant imprint on current ecosystem biogeography.
EVOLUTION OF THE NORTH AMERICAN CORDILLERA
▪ Abstract  The Cordilleran orogen of western North America is a segment of the Circum-Pacific orogenic belt where subduction of oceanic lithosphere has been underway along a great circle of the globe since breakup of the supercontinent Pangea began in Triassic time. Early stages of Cordilleran evolution involved Neoproterozoic rifting of the supercontinent Rodinia to trigger miogeoclinal sedimentation along a passive continental margin until Late Devonian time, and overthrusting of oceanic allochthons across the miogeoclinal belt from Late Devonian to Early Triassic time. Subsequent evolution of the Cordilleran arc-trench system was punctuated by tectonic accretion of intraoceanic island arcs that further expanded the Cordilleran continental margin during mid-Mesozoic time, and later produced a Cretaceous batholith belt along the Cordilleran trend. Cenozoic interaction with intra-Pacific seafloor spreading systems fostered transform faulting along the Cordilleran continental margin and promoted incipient rupture of continental crust within the adjacent continental block.
Mastering the Inland Seas
Theodore J. Karamanski's sweeping maritime history demonstrates the far-ranging impact that the tools and infrastructure developed for navigating the Great Lakes had on the national economies, politics, and environment of continental North America. Synthesizing popular as well as original historical scholarship, Karamanski weaves a colorful narrative illustrating how disparate private and government interests transformed these vast and dangerous waters into the largest inland water transportation system in the world. Karamanski explores both the navigational and sailing tools of First Nations peoples and the dismissive and foolhardy attitude of early European maritime sailors. He investigates the role played by commercial boats in the Underground Railroad, as well as how the federal development of crucial navigational resources exacerbated sectionalism in the antebellum United States. Ultimately Mastering the Inland Sea shows the undeniable environmental impact of technologies used by the modern commercial maritime industry. This expansive story illuminates the symbiotic relationship between infrastructure investment in the region's interconnected waterways and North America's lasting economic and political development.
Paired oxygen isotope records reveal modern North American atmospheric dynamics during the Holocene
The Pacific North American (PNA) teleconnection has a strong influence on North American climate. Instrumental records and century-scale reconstructions indicate an accelerating tendency towards the positive PNA state since the mid-1850s, but much less is known about long-term PNA variability. Here we reconstruct PNA-like climate variability during the mid- and late Holocene using paired oxygen isotope records from two regions in North America with robust, anticorrelated isotopic response to the modern PNA. We identify mean states of more negative and positive PNA-like climate during the mid- and late Holocene, respectively. Superimposed on the secular change between states is a robust, quasi-200-year oscillation, which we associate with the de Vries solar cycle. These findings suggest the persistence of PNA-like climate variability throughout the mid- and late Holocene, provide evidence for modulation of PNA over multiple timescales and may help researchers de-convolve PNA pattern variation from other factors reflected in palaeorecords.
Solar-Aligned Pictographs at the Paleoindian Site of Painel do Pilão along the Lower Amazon River at Monte Alegre, Brazil
The archaeological sites near Monte Alegre, along Brazil's lower Amazon River, provide new information on the little-known activities and symbolism of South American Paleoindians toward the end of the Ice Age. While paleoindian sites like Monte Verde in Chile, or Guitarrero Cave in Peru, are located near the pacific coast, Monte Alegre lies much further inland, 680 km upriver from the mouth of the Amazon River and the Atlantic Coast. With excavated wood charcoal radiocarbon dated as early as 13,200 calibrated years ago, the hill-as a source of sandstone and quartz lithics-supplied early pioneers with adequate tools needed for colonizing the interior of the continent. Once there, they painted rock art on the landscape, which bears a record of the sun's horizon positions throughout the year. At just 2° south of the equator, Monte Alegre shows no overt seasonal changes beyond fluctuating rainfall amounts, unlike at higher latitudes where temperature, amount of daylight, foliage, and forms of precipitation markedly change. Near the equator, solar and stellar horizon sightings most visibly track the passage of time and seasonal cycles. However, horizons are often hidden behind high forest canopy throughout much of the Amazon Rainforest; but in the Monte Alegre hill ridges looming above the river, paleoindians could hike above the canopy to peer at the horizon, more effectively synchronizing their activities to ecological cycles. This research suggests that Monte Alegre paleoindians delimited the azimuthal range of the sun in a solar year with notational pictographs aligned to horizon sightings at Painel do Pilão, and leaving a painted grid of tally marks that might have served as a rudimentary early calendar. The broad-reaching implication for early Americans is that through the strategic placement of rock art, these ancient artists fostered predictive archaeorecording from which resources could be optimally extracted, ceremonial activities could be consistently scheduled, and gatherings for social and economic exchange could be more efficiently coordinated.
Reaching for the Stars? Astronomy and Growth in Chile
While scholars and policy practitioners often advocate for science and technology transfer as a motor for economic growth, many in Latin America have long warned of the pitfalls of such top-down, North-South transfers. To many in Latin America, scientific aid or cooperation from the North has often reproduced hierarchies that perpetuate dependency. Large astronomy observatories located in Chile -with a high price tag, cutting-edge technology, and seen to answer seemingly arcane research questions - seem ripe for reproducing precisely these kinds of hierarchical relationships. Using data from documents, interviews, and a site visit to Gemini South, one of several large telescopes in Chile, this paper takes a historical perspective to examine how resilient these hierarchical relationships are. Over forty years, astronomy in Chile grew thanks to new policies that fostered cooperation among universities and gave locals privileged access to the telescopes. But the community also grew in ways that reproduced dependency: foreign science benefits significantly, the Chilean state operates in top-down ways, and its support for science leaves it blind to the benefits high-tech telescopes deliver to Chile, which are not linked to export-led growth. The state appears as both an obstacle and an enabler to the growth of a national scientific community.