Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Full-Text Available
      Is Full-Text Available
      Clear All
      Is Full-Text Available
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Subject
    • Publisher
    • Source
    • Language
    • Place of Publication
    • Contributors
213 result(s) for "Astronomy Chronology"
Sort by:
Companion to the cosmos
This is a comprehensive guide to everything mankind knows about the universe, written by one of our most noted science popularisers. The book takes the form of an A-Z, and ends with a timeline of key dates in scientific history.
Newton and the origin of civilization
Isaac Newton'sChronology of Ancient Kingdoms Amended, published in 1728, one year after the great man's death, unleashed a storm of controversy. And for good reason. The book presents a drastically revised timeline for ancient civilizations, contracting Greek history by five hundred years and Egypt's by a millennium.Newton and the Origin of Civilizationtells the story of how one of the most celebrated figures in the history of mathematics, optics, and mechanics came to apply his unique ways of thinking to problems of history, theology, and mythology, and of how his radical ideas produced an uproar that reverberated in Europe's learned circles throughout the eighteenth century and beyond. Jed Buchwald and Mordechai Feingold reveal the manner in which Newton strove for nearly half a century to rectify universal history by reading ancient texts through the lens of astronomy, and to create a tight theoretical system for interpreting the evolution of civilization on the basis of population dynamics. It was during Newton's earliest years at Cambridge that he developed the core of his singular method for generating and working with trustworthy knowledge, which he applied to his study of the past with the same rigor he brought to his work in physics and mathematics. Drawing extensively on Newton's unpublished papers and a host of other primary sources, Buchwald and Feingold reconcile Isaac Newton the rational scientist with Newton the natural philosopher, alchemist, theologian, and chronologist of ancient history.
How face perception unfolds over time
Within a fraction of a second of viewing a face, we have already determined its gender, age and identity. A full understanding of this remarkable feat will require a characterization of the computational steps it entails, along with the representations extracted at each. Here, we used magnetoencephalography (MEG) to measure the time course of neural responses to faces, thereby addressing two fundamental questions about how face processing unfolds over time. First, using representational similarity analysis, we found that facial gender and age information emerged before identity information, suggesting a coarse-to-fine processing of face dimensions. Second, identity and gender representations of familiar faces were enhanced very early on, suggesting that the behavioral benefit for familiar faces results from tuning of early feed-forward processing mechanisms. These findings start to reveal the time course of face processing in humans, and provide powerful new constraints on computational theories of face perception.
The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk
Transient heating events that formed calcium-aluminum-rich inclusions (CAIs) and chondrules are fundamental processes in the evolution of the solar protoplanetary disk, but their chronology is not understood. Using U-corrected Pb-Pb dating, we determined absolute ages of individual CAIs and chondrules from primitive meteorites. CAIs define a brief formation interval corresponding to an age of 4567.30 ± 0.16 million years (My), whereas chondrule ages range from 4567.32 ± 0.42 to 4564.71 ± 0.30 My. These data refute the long-held view of an age gap between CAIs and chondrules and, instead, indicate that chondrule formation started contemporaneously with CAIs and lasted ~3 My. This time scale is similar to disk lifetimes inferred from astronomical observations, suggesting that the formation of CAIs and chondrules reflects a process intrinsically linked to the secular evolution of accretionary disks.
Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site
The International Commission on Stratigraphy (ICS) utilises benchmark chronostratigraphies to divide geologic time. The reliability of these records is fundamental to understand past global change. Here we use the most detailed luminescence dating age model yet published to show that the ICS chronology for the Quaternary terrestrial type section at Jingbian, desert marginal Chinese Loess Plateau, is inaccurate. There are large hiatuses and depositional changes expressed across a dynamic gully landform at the site, which demonstrates rapid environmental shifts at the East Asian desert margin. We propose a new independent age model and reconstruct monsoon climate and desert expansion/contraction for the last ~250 ka. Our record demonstrates the dominant influence of ice volume on desert expansion, dust dynamics and sediment preservation, and further shows that East Asian Summer Monsoon (EASM) variation closely matches that of ice volume, but lags insolation by ~5 ka. These observations show that the EASM at the monsoon margin does not respond directly to precessional forcing.
Asteroid families: properties, recent advances, and future opportunities
Collisions are one of the key processes shaping planetary systems. Asteroid families are outcomes of such collision still identifiable across our solar system. The families provide a unique view of catastrophic disruption phenomena and have been in the focus of planetary scientists for more than a century. Most of them are located in the main belt, a ring of asteroids between Mars and Jupiter. Here we review the basic properties of the families, discuss some recent advances, and anticipate future challenges. This review pays more attention to dynamic aspects such as family identification, age determination, and long-term evolution. The text, however, goes beyond that. Especially, we cover the details of young families that see the major advances in the last years, and we anticipate it will develop even faster in the future. We also discuss the relevance of asteroid families for water-ice content in the asteroid belt and our current knowledge on links between families and main-belt comets. query Please check the edit made in the article title.
Chronology protection implementation in analogue gravity
Analogue gravity systems offer many insights into gravitational phenomena, both at the classical and at the semiclassical level. The existence of an underlying Minkowskian structure (or Galilean in the non-relativistic limit) in the laboratory has been argued to directly forbid the simulation of geometries with Closed Timelike Curves (CTCs) within analogue systems. We will show that this is not strictly the case. In principle, it is possible to simulate spacetimes with CTCs whenever this does not entail the presence of a chronological horizon separating regions with CTCs from regions that do not have CTCs. We find an Analogue-gravity Chronology protection mechanism very similar in spirit to Hawking’s Chronology Protection hypothesis. We identify the universal behaviour of analogue systems near the formation of such horizons and discuss the further implications that this analysis has from an emergent gravity perspective. Furthermore, we build explicit geometries containing CTCs, for instance spacetimes constructed from two warp-drive configurations, that might be useful for future analysis, both from a theoretical and an experimental point of view.
2600-years of stratospheric volcanism through sulfate isotopes
High quality records of stratospheric volcanic eruptions, required to model past climate variability, have been constructed by identifying synchronous (bipolar) volcanic sulfate horizons in Greenland and Antarctic ice cores. Here we present a new 2600-year chronology of stratospheric volcanic events using an independent approach that relies on isotopic signatures (Δ S and in some cases Δ O) of ice core sulfate from five closely-located ice cores from Dome C, Antarctica. The Dome C stratospheric reconstruction provides independent validation of prior reconstructions. The isotopic approach documents several high-latitude stratospheric events that are not bipolar, but climatically-relevant, and diverges deeper in the record revealing tropospheric signals for some previously assigned bipolar events. Our record also displays a collapse of the Δ O anomaly of sulfate for the largest volcanic eruptions, showing a further change in atmospheric chemistry induced by large emissions. Thus, the refinement added by considering both isotopic and bipolar correlation methods provides additional levels of insight for climate-volcano connections and improves ice core volcanic reconstructions.
The age of everything
Taking advantage of recent advances throughout the sciences, Matthew Hedman brings the distant past closer to us than it has ever been. Here, he shows how scientists have determined the age of everything from the colonization of the New World over 13,000 years ago to the origin of the universe nearly fourteen billion years ago. Hedman details, for example, how interdisciplinary studies of the Great Pyramids of Egypt can determine exactly when and how these incredible structures were built. He shows how the remains of humble trees can illuminate how the surface of the sun has changed over the past ten millennia. And he also explores how the origins of the earth, solar system, and universe are being discerned with help from rocks that fall from the sky, the light from distant stars, and even the static seen on television sets. Covering a wide range of time scales, from the Big Bang to human history, The Age of Everything is a provocative and far-ranging look at how science has determined the age of everything from modern mammals to the oldest stars, and will be indispensable for all armchair time travelers.
Determining the Relative Cratering Ages of Regions of Psyche’s Surface
The study of the cratering history of asteroid (16) Psyche is one of the investigations to be performed by the NASA Psyche mission. A dedicated Relative Ages Working Group will carry on these investigations using primarily imaging and topographic data, and complement the interpretation of these data with theoretical models (hydrocodes to simulate impacts) as well as laboratory experiments (impact experiments on relevant target materials). The Psyche Science Team will also rely on experience and lessons learned from prior space missions, such as NASA Dawn and ESA Rosetta . The main goals of the cratering investigations are to map craters and characterize their morphology across Psyche’s surface over a range of spatial resolutions. These data will then be used to constrain relative and absolute ages of Psyche’s terrains, and impact-related processes will inform other investigations, such as geological mapping, surface composition, and internal structure. Psyche’s cratering data will also be used to perform comparative analyses with similar data from other rocky asteroids. The present chapter provides a pre-launch view of the planned activities and methodologies of the Relative Ages Working Group.