Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
532 result(s) for "Asynchrony"
Sort by:
Local species diversity, β-diversity and climate influence the regional stability of bird biomass across North America
Biodiversity often stabilizes aggregate ecosystem properties (e.g. biomass) at small spatial scales. However, the importance of species diversity within communities and variation in species composition among communities (β-diversity) for stability at larger scales remains unclear. Using a continental-scale analysis of 1657 North American breeding-bird communities spanning 20-years and 35 ecoregions, we show local species diversity and β-diversity influence two components of regional stability: local stability (stability of bird biomass within sites) and spatial asynchrony (asynchronous fluctuations in biomass among sites). We found spatial asynchrony explained three times more variation in regional stability of bird biomass than did local stability. This result contrasts with studies at smaller spatial scales—typically plant metacommunities under 1 ha—that find local stability to be more important than spatial asynchrony. Moreover, spatial asynchrony of bird biomass increased with bird β-diversity and climate heterogeneity (temperature and precipitation), while local stability increased with species diversity. Our study reveals new insights into the scale-dependent processes regulating ecosystem stability, providing evidence that both local biodiversity loss and homogenization can destabilize ecosystem processes at biogeographic scales.
How to measure response diversity
The insurance effect of biodiversity—that diversity stabilises aggregate ecosystem properties—is mechanistically underlain by inter‐ and intraspecific trait variation in organismal responses to the environment. This variation, termed response diversity, is therefore a potentially critical determinant of ecological stability. However, response diversity has yet to be widely quantified, possibly due to difficulties in its measurement. Even when it has been measured, approaches have varied. Here, we review methods for measuring response diversity and from them distil a methodological framework for quantifying response diversity from experimental and/or observational data, which can be practically applied in laboratory and field settings across a range of taxa. Previous empirical studies on response diversity most commonly invoke response traits as proxies aimed at capturing species' ecological responses to the environment. Our approach, which is based on environment‐dependent ecological responses to any biotic or abiotic environmental variable, is conceptually simple and robust to any form of environmental response, including nonlinear responses. Given its derivation from empirical data on species' ecological responses, this approach should more directly reflect response diversity than the trait‐based approach dominant in the literature. By capturing even subtle inter‐ or intraspecific variation in environmental responses, and environment dependencies in response diversity, we hope this framework will motivate tests of the diversity–stability relationship from a new perspective, and provide an approach for mapping, monitoring and conserving this critical dimension of biodiversity.
Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony
Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher β diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and β diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and β diversity lead to a positive diversity–stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services.
Induction of subject-ventilator asynchrony by variation of respiratory parameters in a lung injury model in pigs
Background Subject-ventilator asynchrony (SVA) was shown to be associated with negative clinical outcomes. To elucidate pathophysiology pathways and effects of SVA on lung tissue histology a reproducible animal model of artificially induced asynchrony was developed and evaluated. Methods Alterations in ventilator parameters were used to induce the three main types of asynchrony: ineffective efforts (IE), auto-triggering (AT), and double-triggering (DT). Airway flow and pressure, as well as oesophageal pressure waveforms, were recorded, asynchrony cycles were manually classified and the asynchrony index (AIX) was calculated. Bench tests were conducted on an active lung simulator with ventilator settings altered cycle by cycle. The developed algorithm was evaluated in three pilot experiments and a study in pigs ventilated for twelve hours with AIX = 25%. Results IE and AT were induced reliably and fail-safe by end-expiratory hold and adjustment of respiratory rate, respectively. DT was provoked using airway pressure ramp prolongation, however not controlled specifically in the pilots. In the subsequent study, an AIX = 28.8% [24.0%-34.4%] was induced and maintained over twelve hours. Conclusions The method allows to reproducibly induce and maintain three clinically relevant types of SVA observed in ventilated patients and may thus serve as a useful tool for future investigations on cellular and inflammatory effects of asynchrony.
Stability and asynchrony of local communities but less so diversity increase regional stability of Inner Mongolian grassland
Extending knowledge on ecosystem stability to larger spatial scales is urgently needed because present local-scale studies are generally ineffective in guiding management and conservation decisions of an entire region with diverse plant communities. We investigated stability of plant productivity across spatial scales and hierarchical levels of organization and analyzed impacts of dominant species, species diversity, and climatic factors using a multisite survey of Inner Mongolian grassland. We found that regional stability across distant local communities was related to stability and asynchrony of local communities. Using only dominant instead of all-species dynamics explained regional stability almost equally well. The diversity of all or only dominant species had comparatively weak effects on stability and synchrony, whereas a lower mean and higher variation of precipitation destabilized regional and local communities by reducing population stability and synchronizing species dynamics. We demonstrate that, for semi-arid temperate grassland with highly uneven species abundances, the stability of regional communities is increased by stability and asynchrony of local communities and these are more affected by climate rather than species diversity. Reduced amounts and increased variation of precipitation in the future may compromise the sustainable provision of ecosystem services to human well-being in this region.
Nitrogen addition reduced ecosystem stability regardless of its impacts on plant diversity
1. Global environmental changes are altering ecosystem stability, sometimes by altering biodiversity. For example, by driving grassland plant species loss, nitrogen (N) addition can reduce ecosystem stability. In other cases, however, N addition may alter productivity and ecosystem stability, by increasing the dominance of particularly productive or stable species. 2. We examined how N addition affected plant diversity, productivity and the temporal stability of productivity in an 8-year grassland experiment. We found that N addition enhanced productivity and decreased ecosystem stability throughout the experimental period, even though it reduced species richness in the first 4 years, but increased richness during the subsequent years. 3. During the early years, N addition decreased ecosystem stability by synchronizing species fluctuations and population stability of the dominant species. During later years, N addition did not increase stability, even though it increased species richness; instead, N addition continued to decrease ecosystem stability by decreasing species dominance and stability of the dominant species, without changing the identity of the dominant species. 4. Synthesis. Our results indicate that N addition decreased ecosystem stability via mechanisms that were both dependent and independent of plant diversity, and that the mechanisms involved shifted over time. N addition impacted on ecosystem functioning through species richness and the effects on species dominance and the stability of most dominant species, highlighting the join effect of multiple biotic drivers in regulating ecosystem stability.
Asynchronies during mechanical ventilation are associated with mortality
Purpose This study aimed to assess the prevalence and time course of asynchronies during mechanical ventilation (MV). Methods Prospective, noninterventional observational study of 50 patients admitted to intensive care unit (ICU) beds equipped with Better Care™ software throughout MV. The software distinguished ventilatory modes and detected ineffective inspiratory efforts during expiration (IEE), double-triggering, aborted inspirations, and short and prolonged cycling to compute the asynchrony index (AI) for each hour. We analyzed 7,027 h of MV comprising 8,731,981 breaths. Results Asynchronies were detected in all patients and in all ventilator modes. The median AI was 3.41 % [IQR 1.95–5.77]; the most common asynchrony overall and in each mode was IEE [2.38 % (IQR 1.36–3.61)]. Asynchronies were less frequent from 12 pm to 6 am [1.69 % (IQR 0.47–4.78)]. In the hours where more than 90 % of breaths were machine-triggered, the median AI decreased, but asynchronies were still present. When we compared patients with AI > 10 vs AI ≤ 10 %, we found similar reintubation and tracheostomy rates but higher ICU and hospital mortality and a trend toward longer duration of MV in patients with an AI above the cutoff. Conclusions Asynchronies are common throughout MV, occurring in all MV modes, and more frequently during the daytime. Further studies should determine whether asynchronies are a marker for or a cause of mortality.
Foundation species promote community stability by increasing diversity in a giant kelp forest
Foundation species structure communities, promote biodiversity, and stabilize ecosystem processes by creating locally stable environmental conditions. Despite their critical importance, the role of foundation species in stabilizing natural communities has seldom been quantified. In theory, the stability of a foundation species should promote community stability by enhancing species richness, altering the population fluctuations of individual species, or both. Here we tested the hypothesis that the stability of a marine foundation species, the giant kelp Macrocystis pyrifera, increased the stability of the aggregate biomass of a phylogenetically diverse assemblage of understory algae and sessile invertebrates that compete for space beneath the giant kelp canopy. To achieve this goal, we analyzed an 18-yr time series of the biomass of giant kelp and its associated benthic community collected from 32 plots distributed among nine shallow reefs in the Santa Barbara Channel, USA. We showed that the stability of understory algae and sessile invertebrates was positively and indirectly related to the stability of giant kelp, which primarily resulted from giant kelp’s direct positive association with species richness. The stability of all community types was positively related to species richness via increased species stability and species asynchrony. The stabilizing effects of richness were three to four times stronger when algae and invertebrates were considered separately rather than in combination. Our finding that diversity–stability relationships were stronger in communities consisting of species with similar resource requirements suggests that competition for shared resources rather than differential responses to environmental conditions played a more important role in stabilizing the community. Increasing threats to structure-forming foundation species worldwide necessitates a detailed understanding of how they influence their associated community. This study is among the first to show that dampened temporal fluctuations in the biomass of a foundation species is an important determinant of the stability of the complex communities it supports.
The relationship between the spatial scaling of biodiversity and ecosystem stability
Aim: Ecosystem stability and its link with biodiversity have mainly been studied at the local scale. Here we present a simple theoretical model to address the joint dependence of diversity and stability on spatial scale, from local to continental. Methods: The notion of stability we use is based on the temporal variability of an ecosystem-level property, such as primary productivity. In this way, our model integrates the well-known species–area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, called the invariability–area relationship (IAR). Results: We show that the link between the two relationships strongly depends on whether the temporal fluctuations of the ecosystem property of interest are more correlated within than between species. If fluctuations are correlated within species but not between them, then the IAR is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to explore the effects of species loss and habitat destruction on stability, and find a rich variety of multi-scale spatial dependencies, with marked differences between the two assumptions. Main conclusions: The dependence of ecosystem stability on biodiversity across spatial scales is governed by the spatial decay of correlations within and between species. Our work provides a point of reference for mechanistic models and data analyses. More generally, it illustrates the relevance of macroecology for ecosystem functioning and stability.
Species interactions increase the temporal stability of community productivity in Pinus sylvestris—Fagus sylvatica mixtures across Europe
1. There is increasing evidence that species diversity enhances the temporal stability (TS) of community productivity in different ecosystems, although its effect at the population and tree levels seems to be negative or neutral. Asynchrony in species responses to environmental conditions was found to be one of the main drivers of this stabilizing process. However, the effect of species mixing on the stability of productivity, and the relative importance of the associated mechanisms, remain poorly understood in forest communities. 2. We investigated the way mixing species influenced the TS of productivity in Pinus sylvestris L. and Fagus sylvatica L. forests, and attempted to determine the main drivers among overyielding, asynchrony between species annual growth responses to environmental conditions, and temporal shifts in species interactions. We used a network of 93 experimental plots distributed across Europe to compare the TS of basal area growth over a 15-year period (1999-2013) in mixed and monospecific forest stands at different organizational levels, namely the community, population and individual tree levels. 3. Mixed stands showed a higher TS of basal area growth than monospecific stands at the community level, but not at the population or individual tree levels. The TS at the community level was related to asynchrony between species growth in mixtures, but not to overyielding nor to asynchrony between species growth in monospecific stands. Temporal shifts in species interactions were also related to asynchrony and to the mixing effect on the TS. 4. Synthesis. Our findings confirm that species mixing can stabilize productivity at the community level, whereas there is a neutral or negative effect on stability at the population and individual tree levels. The contrasting findings regarding the relationships between the temporal stability and asynchrony in species growth in mixed and monospecific stands suggest that the main driver in the stabilizing process may be the temporal niche complementarity between species rather than differences in species' intrinsic responses to environmental conditions.