Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
823 result(s) for "Ataxins"
Sort by:
Intercellular Propagation and Aggregate Seeding of Mutant Ataxin-1
Intercellular propagation of aggregated protein inclusions along actin-based tunneling nanotubes (TNTs) has been reported as a means of pathogenic spread in Alzheimer’s, Parkinson’s, and Huntington’s diseases. Propagation of oligomeric-structured polyglutamine-expanded ataxin-1 (Atxn1[154Q]) has been reported in the cerebellum of a Spinocerebellar ataxia type 1 (SCA1) knock-in mouse to correlate with disease propagation. In this study, we investigated whether a physiologically relevant polyglutamine-expanded ATXN1 protein (ATXN1[82Q]) could propagate intercellularly. Using a cerebellar-derived live cell model, we observed ATXN1 aggregates form in the nucleus, subsequently form in the cytoplasm, and finally, propagate to neighboring cells along actin-based intercellular connections. Additionally, we observed the facilitation of aggregate-resistant proteins into aggregates given the presence of aggregation-prone proteins within cells. Taken together, our results support a pathogenic role of intercellular propagation of polyglutamine-expanded ATXN1 inclusions.
Identification of the ataxin-1 interaction network and its impact on spinocerebellar ataxia type 1
Background Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein. The pathogenic mechanism resulting in SCA1 is still unclear. Protein–protein interactions affect the function and stability of ataxin-1. Methods Wild-type and mutant ataxin-1 were expressed in HEK-293T cells. The levels of expression were assessed using real-time polymerase chain reaction (PCR) and Western blots. Co-immunoprecipitation was done in HEK-293T cells expressing exogenous wild-type and mutant ataxin-1 using anti-Flag antibody following by tandem affinity purification in order to study protein–protein interactions. The candidate interacting proteins were validated by immunoprecipitation. Chromatin immunoprecipitation and high-throughput sequencing and RNA immunoprecipitation and high-throughput sequencing were performed using HEK-293T cells expressing wild-type or mutant ataxin-1. Results In this study using HEK-293T cells, we found that wild-type ataxin-1 interacted with MCM2, GNAS, and TMEM206, while mutant ataxin-1 lost its interaction with MCM2, GNAS, and TMEM206. Two ataxin-1 binding targets containing the core GGAG or AAAT were identified in HEK-293T cells using ChIP-seq. Gene Ontology analysis of the top ataxin-1 binding genes identified SLC6A15 , NTF3 , KCNC3 , and DNAJC6 as functional genes in neurons in vitro. Ataxin-1 also was identified as an RNA-binding protein in HEK-293T cells using RIP-seq, but the polyglutamine expansion in the ataxin-1 had no direct effects on the RNA-binding activity of ataxin-1. Conclusions An expanded polyglutamine tract in ataxin-1 might interfere with protein–protein or protein–DNA interactions but had little effect on protein–RNA interactions. This study suggested that the dysfunction of protein–protein or protein–DNA interactions is involved in the pathogenesis of SCA1.
Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination
Although mammalian long non-coding (lnc)RNAs are best known for modulating transcription, their post-transcriptional influence on mRNA splicing, stability and translation is emerging. Here we report a post-translational function for the lncRNA HOTAIR as an inducer of ubiquitin-mediated proteolysis. HOTAIR associates with E3 ubiquitin ligases bearing RNA-binding domains, Dzip3 and Mex3b, as well as with their respective ubiquitination substrates, Ataxin-1 and Snurportin-1. In this manner, HOTAIR facilitates the ubiquitination of Ataxin-1 by Dzip3 and Snurportin-1 by Mex3b in cells and in vitro , and accelerates their degradation. HOTAIR levels are highly upregulated in senescent cells, causing rapid decay of targets Ataxin-1 and Snurportin-1, and preventing premature senescence. These results uncover a role for a lncRNA, HOTAIR , as a platform for protein ubiquitination. The long non-coding RNA HOTAIR acts as a scaffold to bring together chromatin silencing complexes in the nucleus. Here, the authors show that HOTAIR also serves as a scaffold between E3 ubiquitin ligases and their substrates and thereby enhances their ubiquitination.
Protein aggregation in amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the aggregation of ubiquitinated proteins in affected motor neurons. Recent studies have identified several new molecular constituents of ALS-linked cellular aggregates, including FUS, TDP-43, OPTN, UBQLN2 and the translational product of intronic repeats in the gene C9ORF72 . Mutations in the genes encoding these proteins are found in a subgroup of ALS patients and segregate with disease in familial cases, indicating a causal relationship with disease pathogenesis. Furthermore, these proteins are often detected in aggregates of non-mutation carriers and those observed in other neurodegenerative disorders, supporting a widespread role in neuronal degeneration. The molecular characteristics and distribution of different types of protein aggregates in ALS can be linked to specific genetic alterations and shows a remarkable overlap hinting at a convergence of underlying cellular processes and pathological effects. Thus far, self-aggregating properties of prion-like domains, altered RNA granule formation and dysfunction of the protein quality control system have been suggested to contribute to protein aggregation in ALS. The precise pathological effects of protein aggregation remain largely unknown, but experimental evidence hints at both gain- and loss-of-function mechanisms. Here, we discuss recent advances in our understanding of the molecular make-up, formation, and mechanism-of-action of protein aggregates in ALS. Further insight into protein aggregation will not only deepen our understanding of ALS pathogenesis but also may provide novel avenues for therapeutic intervention.
The Machado–Joseph disease deubiquitylase ataxin‐3 interacts with LC3C/GABARAP and promotes autophagy
The pathology of spinocerebellar ataxia type 3, also known as Machado‐Joseph disease, is triggered by aggregation of toxic ataxin‐3 (ATXN3) variants containing expanded polyglutamine repeats. The physiological role of this deubiquitylase, however, remains largely unclear. Our recent work showed that ATX‐3, the nematode orthologue of ATXN3, together with the ubiquitin‐directed segregase CDC‐48, regulates longevity in Caenorhabditis elegans. Here, we demonstrate that the long‐lived cdc‐48.1; atx‐3 double mutant displays reduced viability under prolonged starvation conditions that can be attributed to the loss of catalytically active ATX‐3. Reducing the levels of the autophagy protein BEC‐1 sensitized worms to the effect of ATX‐3 deficiency, suggesting a role of ATX‐3 in autophagy. In support of this conclusion, the depletion of ATXN3 in human cells caused a reduction in autophagosomal degradation of proteins. Surprisingly, reduced degradation in ATXN3‐depleted cells coincided with an increase in the number of autophagosomes while levels of lipidated LC3 remained unaffected. We identified two conserved LIR domains in the catalytic Josephin domain of ATXN3 that directly interacted with the autophagy adaptors LC3C and GABARAP in vitro. While ATXN3 localized to early autophagosomes, it was not subject to lysosomal degradation, suggesting a transient regulatory interaction early in the autophagic pathway. We propose that the deubiquitylase ATX‐3/ATXN3 stimulates autophagic degradation by preventing superfluous initiation of autophagosomes, thereby promoting an efficient autophagic flux important to survive starvation. The deubiquitylase ataxin‐3 has been linked to longevity in Caenorhabditis elegans, a phenotype that typically coincides with enhanced autophagy. The longevity phenotype comes at the expense of an increased sensitivity to starvation, indicative for a defect in autophagy. This study reveals a novel, stimulatory role of ataxin‐3 in autophagy by preventing superfluous induction of autophagosomes.
Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models
Nancy Bonini and colleagues performed a genome-wide yeast screen for modifiers of TDP-43 toxicity and identified genes in RNA metabolism, including several RNA-binding proteins with connections to stress granules. They determined that therapeutic modulation of stress granule–associated eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models in flies and primary mammalian neurons. Amyotrophic lateral sclerosis (ALS) is a fatal, late-onset neurodegenerative disease primarily affecting motor neurons. A unifying feature of many proteins associated with ALS, including TDP-43 and ataxin-2, is that they localize to stress granules. Unexpectedly, we found that genes that modulate stress granules are strong modifiers of TDP-43 toxicity in Saccharomyces cerevisiae and Drosophila melanogaster . eIF2α phosphorylation is upregulated by TDP-43 toxicity in flies, and TDP-43 interacts with a central stress granule component, polyA-binding protein (PABP). In human ALS spinal cord neurons, PABP accumulates abnormally, suggesting that prolonged stress granule dysfunction may contribute to pathogenesis. We investigated the efficacy of a small molecule inhibitor of eIF2α phosphorylation in ALS models. Treatment with this inhibitor mitigated TDP-43 toxicity in flies and mammalian neurons. These findings indicate that the dysfunction induced by prolonged stress granule formation might contribute directly to ALS and that compounds that mitigate this process may represent a novel therapeutic approach.
Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS
The causes of amyotrophic lateral sclerosis (ALS), a devastating human neurodegenerative disease, are poorly understood, although the protein TDP-43 has been suggested to have a critical role in disease pathogenesis. Here we show that ataxin 2 (ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models. ATXN2 and TDP-43 associate in a complex that depends on RNA. In spinal cord neurons of ALS patients, ATXN2 is abnormally localized; likewise, TDP-43 shows mislocalization in spinocerebellar ataxia type 2. To assess the involvement of ATXN2 in ALS, we analysed the length of the polyQ repeat in the ATXN2 gene in 915 ALS patients. We found that intermediate-length polyQ expansions (27–33 glutamines) in ATXN2 were significantly associated with ALS. These data establish ATXN2 as a relatively common ALS susceptibility gene. Furthermore, these findings indicate that the TDP-43–ATXN2 interaction may be a promising target for therapeutic intervention in ALS and other TDP-43 proteinopathies. Genetic risk factors for ALS Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a common adult-onset neurodegenerative disease for which there is no cure. ALS is mostly sporadic but approximately 10% of cases have a familial component, most commonly the SOD1 (superoxide dismutase) gene. Yet SOD1 mutations account for only about 2% of cases in total, so the search for further ALS risk factors continues. The protein TDP-43 is thought to play a role — as yet undetermined — in ALS pathogenesis, and Elden et al . show that ataxin-2, a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models. Analysis of DNA from 915 individuals shows ATXN2 to be a relatively common ALS susceptibility gene, accounting for up to 4.7% of ALS cases. These findings point to the TDP-43/ataxin-2 interaction as a possible target for therapeutic intervention. The causes of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) are poorly understood, although the protein TDP-43 seems to be involved. These authors show that the polyglutamine-containing protein ataxin 2 interacts with TDP-43 and is a potent modifier of TDP-43 toxicity. Moreover, intermediate-length polyglutamine expansions in the ataxin 2 gene significantly associate with ALS. These data establish the ataxin 2 gene as a new and relatively common ALS disease susceptibility gene.
The Initial Symptom and Motor Progression in Spinocerebellar Ataxias
The aim of this study is to determine whether the initial symptom associates with motor progression in spinocerebellar ataxias (SCAs). SCAs are clinically heterogeneous and the initial presentation may represent different subtypes of SCA with different motor progression. We studied 317 participants with SCAs1, 2, 3, and 6 from the Clinical Research Consortium for SCAs (CRC-SCA) and repeatedly measured the severity of ataxia for 2 years. SCA patients were divided into gait-onset and non-gait-onset (speech, vision, and hand dexterity) groups based on the initial presentation. In addition to demographic comparison, we employed regression models to study ataxia progression in these two groups after adjusting for age, sex, and pathological CAG repeats. The majority of SCA patients had gait abnormality as an initial presentation. The pathological CAG repeat expansions were similar between the gait-onset and non-gait-onset groups. In SCA1, gait-onset group progressed slower than non-gait-onset group, while gait-onset SCA6 group progressed faster than their counterpart. In addition, the disease presented 9 years later for SCA2 gait-onset group than non-gait-onset group. Initial symptoms of SCA3 did not influence age of onset or disease progression. The initial symptom in each SCA has a different influence on age of onset and motor progression. Therefore, gait and non-gait-onset groups of SCAs might represent different subtypes of the diseases.
Phenotypic and molecular diversities of spinocerebellar ataxia type 2 in Japan
BackgroundWe intended to clarify the phenotypic and molecular diversities of spinocerebellar ataxia type 2 (SCA2) in Japan.MethodsDNA was extracted from the peripheral blood of 436 patients, including 126 patients with chronic neuropathy, 108 with amyotrophic lateral sclerosis, and 202 with cerebellar ataxia. We then PCR-amplified and sequenced the ATXN2 gene. The biopsied sural nerves of mutation-positive patients were subjected to light-microscopic and electron-microscopic analyses. Transfection analyses were performed using a Schwann cell line, IMS32.ResultsWe found PCR-amplified products potentially corresponding to expanded CAG repeats in four patients. Two patients in the chronic neuropathy group had a full repeat expansion or an intermediate expansion (39 or 32 repeats), without limb ataxia. The sural nerve biopsy findings of the two patients included axonal neuropathy and mixed neuropathy (axonal changes with demyelination). Schwann cells harbored either cytoplasmic or nuclear inclusions on electron microscopic examination. Both patients recently exhibited pyramidal signs. In the third patient in the cerebellar ataxia group, we identified a novel 21-base duplication mutation near 22 CAG repeats (c.432_452dup). The transfection study revealed that the 21-base-duplication mutant Ataxin-2 proteins aggregated in IMS32 and rendered cells susceptible to oxidative stress, similar to a CAG-expanded mutant. The fourth patient, with 41 repeats, had ataxia and spasticity. The two patients with cerebellar ataxia also had peripheral neuropathy.ConclusionsPatients with expanded CAG repeats can exhibit a neuropathy-dominant phenotype not described previously. The novel 21-base-duplication mutant seems to share the aggregation properties of polyglutamine-expanded mutants.
Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels
Vascular smooth muscle cells (VSMCs) show pronounced heterogeneity across and within vascular beds, with direct implications for their function in injury response and atherosclerosis. Here we combine single-cell transcriptomics with lineage tracing to examine VSMC heterogeneity in healthy mouse vessels. The transcriptional profiles of single VSMCs consistently reflect their region-specific developmental history and show heterogeneous expression of vascular disease-associated genes involved in inflammation, adhesion and migration. We detect a rare population of VSMC-lineage cells that express the multipotent progenitor marker Sca1, progressively downregulate contractile VSMC genes and upregulate genes associated with VSMC response to inflammation and growth factors. We find that Sca1 upregulation is a hallmark of VSMCs undergoing phenotypic switching in vitro and in vivo, and reveal an equivalent population of Sca1-positive VSMC-lineage cells in atherosclerotic plaques. Together, our analyses identify disease-relevant transcriptional signatures in VSMC-lineage cells in healthy blood vessels, with implications for disease susceptibility, diagnosis and prevention. Vascular smooth muscle cell (VSMC) accumulation is associated with cardiovascular disease. Here, the authors combine single-cell RNA sequencing with lineage labelling to profile VSMC heterogeneity in healthy mice. They show that upregulation of Sca1 in a rare VSMC subpopulation marks a cell phenotype that is prevalent in disease.