Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
51 result(s) for "Atlantic herring fisheries."
Sort by:
Dutch herring
In the seventeenth century, the Dutch herring fisheries in the North Sea were considered the most sophisticated and demanding fishing operation in the world. This is the first study to assess the North Sea herring and herring fisheries over the span of several centuries. It contributes to the understanding of pre-modern natural resource exploitation and the role of the natural environment in long-term development of the Dutch herring fisheries.
Caught in the middle: bottom-up and top-down processes impacting recruitment in a small pelagic fish
Understanding the drivers behind fluctuations in fish populations remains a key objective in fishery science. Our predictive capacity to explain these fluctuations is still relatively low, due to the amalgam of interacting bottom-up and top-down factors, which vary across time and space among and within populations. Gaining a mechanistic understanding of these recruitment drivers requires a holistic approach, combining field, experimental and modelling efforts. Here, we use the Western Baltic Spring-Spawning (WBSS) herring (Clupea harengus) to exemplify the power of this holistic approach and the high complexity of the recruitment drivers (and their interactions). Since the early 2000s, low recruitment levels have promoted intense research on this stock. Our literature synthesis suggests that the major drivers are habitat compression of the spawning beds (due to eutrophication and coastal modification mainly) and warming, which indirectly leads to changes in spawning phenology, prey abundance and predation pressure. Other factors include increased intensity of extreme climate events and new predators in the system. Four main knowledge gaps were identified related to life-cycle migration and habitat use, population structure and demographics, life-stage specific impact of multi-stressors, and predator–prey interactions. Specific research topics within these areas are proposed, as well as the priority to support a sustainable management of the stock. Given that the Baltic Sea is severely impacted by warming, eutrophication and altered precipitation, WBSS herring could be a harbinger of potential effects of changing environmental drivers to the recruitment of small pelagic fishes in other coastal areas in the world.
The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing
Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation.
Limit Reference Points and Equilibrium Stock Dynamics in the Presence of Recruitment Depensation
Depensation (or an Allee effect) has recently been detected in stock–recruitment relationships (SRRs) in four Atlantic herring stocks and one Atlantic cod stock using a Bayesian statistical approach. In the present study, we define the Allee effect threshold (BAET) for these five stocks and propose BAET as a candidate limit reference point (LRP). We compare BAET to traditional LRPs based on proportions of equilibrium unfished biomass (B0) and biomass at maximum sustainable yield (BMSY) assuming a Beverton–Holt or Ricker SRR with and without depensation, and to the change point from a hockey stick SRR (BCP). The BAET for the case studies exceeded 0.2 B0 and 0.4 BMSY for three of the case study stocks and exceedances of 0.2 B0 were more common when the Ricker form of the SRR was assumed. The BAET estimates for all case studies were less than BCP. When there is depensation in the SRR, multiple equilibrium states can exist when fishing at a fixed fishing mortality rate (F) because the equilibrium recruits-per-spawner line at a given F can intersect the SRR more than once. The equilibrium biomass is determined by whether there is excess recruitment at the initial projected stock biomass. Estimates of equilibrium FMSY in the case studies were generally higher for SRRs that included the depensation parameter; however, the long-term F that would lead the stock to crash (Fcrash) in the depensation SRRs was often about half the Fcrash for SRRs without depensation. When warranted, this study recommends exploration of candidate LRPs from depensatory SRRs, especially if Allee effect thresholds exceed commonly used limits, and simulation testing of management strategies for robustness to depensatory effects.
Isolating the influence of ontogeny helps predict island-wide variability in fish otolith chemistry
For marine fishes of commercial interest, defining how individuals vary in certain attributes, through ontogeny, and across space and time, can help expose the structure of harvested populations and guide their management. The chemical markers locked within otoliths are, in principle, ideal for such applications, providing life-long, bio-environmental records for individuals and populations. However, substantial uncertainty still surrounds how intrinsic (i.e., within-individual) and extrinsic (i.e., environmental) processes shape chemical incorporation into otoliths, constraining our ability to predict marker variability when sampling is patchy. To tackle these issues, we measured otolith elemental (Li, Mg, Ca, Mn, Zn, Sr, Ba) and stable isotopic (δ13C, δ18O) concentrations from juvenile Atlantic herring (Clupea harengus) captured in Icelandic nursery sites, and built models to isolate ontogenetic (i.e., age-, growth-related) from environmental influences on otolith chemistry. Otolith Li:Ca, Mg:Ca, Mn:Ca and Sr:Ca declined with age within sites. Age slopes differed among sites for Li:Ca and Mg:Ca, and Sr:Ca was lower in larger fish within an age-class. Individual-level variation (i.e., within site, within age-class) was high for all markers, our models highlighting the importance of temperature and salinity (or proxies these represent) in explaining population-level δ13C and δ18O trends. Age- and year-specific predictions for each marker, at each site, generally accorded well with empirical observations, providing inference on island-wide heterogeneity in otolith chemistry across the juveniles’ full distributional range. Such ‘isoscapes’, generated from mechanistically-focused models as presented here, might benefit investigations of population structure for other exploited species, particularly where sampling limitations hamper fishery-management efforts.
Genetic Stock Identification Reveals Mismatches Between Management Areas and Population Genetic Structure in a Migratory Pelagic Fish
Sustainable fisheries management is important for the continued harvest of the world's marine resources, especially as they are increasingly challenged by a range of climatic and anthropogenic factors. One of the pillars of sustainable fisheries management is the accurate identification of the biological units, i.e., populations. Here, we developed and implemented a genetic baseline for Atlantic herring harvested in the Norwegian offshore fisheries to investigate the validity of the current management boundaries. This was achieved by genotyping > 15,000 herring from the northern European seas, including samples of all the known populations in the region, with a panel of population-informative SNPs mined from existing genomic resources. The final genetic baseline consisted of ~1000 herring from 12 genetically distinct populations. We thereafter used the baseline to investigate mixed catches from the North and Norwegian Seas, revealing that each management area consisted of multiple populations, as previously suspected. However, substantial numbers (up to 50% or more within a sample) of herring were found outside of their expected management areas, e.g., North Sea autumn-spawning herring north of 62° N (average = 19.2%), Norwegian spring-spawning herring south of 62° N (average = 13.5%), and western Baltic spring-spawning herring outside their assumed distribution area in the North Sea (average = 20.0%). Based upon these extensive observations, we conclude that the assessment and management areas currently in place for herring in this region need adjustments to reflect the populations present. Furthermore, we suggest that for migratory species, such as herring, a paradigm shift from using static geographic stock boundaries towards spatial dynamic boundaries is needed to meet the requirements of future sustainable management regimes.
The necessity of a holistic approach when managing marine mammal–fisheries interactions
Seal populations are recovering in many regions around the world and, consequently, they are increasingly interacting with fisheries. We used an Ecopath with Ecosim model for the offshore Central Baltic Sea to investigate the interactions between the changes in fish stocks and grey seal (Halichoerus grypus) population under different fishing and environmental scenarios for the twenty-first century. The assumed climate, eutrophication and cod (Gadus morhua) fisheries scenarios modified seal predation impacts on fish. Fish biomass and catches are more affected by fishing mortality and the environment than by seal predation. Our results highlight that the impacts of the increasing seal population on lower trophic levels are complex; thus, we emphasize the need to consider a range of possible ecosystem contexts when evaluating potential impacts of top predators. Finally, we suggest that an increasing seal population is not likely to hinder the preservation of the main Baltic fish stocks.
Fishing, predation, and temperature drive herring decline in a large marine ecosystem
Since 1960, landings of Atlantic herring have been the greatest of any marine species in Canada, surpassing Atlantic cod and accounting for 24% of the total seafood harvested in Atlantic Canada. The Scotian Shelf‐Bay of Fundy herring fisheries (NAFO Division 4VWX) is among Canada's oldest and drives this productivity, accounting for up to 75% of the total herring catch in some years. The stocks’ productivity and overall health have declined since 1965. Despite management measures to promote recovery implemented since 2003, biomass remains low and is declining. The factors that drive the productivity of 4VWX herring are primarily unresolved, likely impeding the effectiveness of management actions on this stock. We evaluated potential drivers of herring variability by analyzing 52 time‐series that describe the temporal and spatial evolution of the 4VWX herring population and the physical, ecological, and anthropogenic factors that could affect them using structural equation models. Variation in herring biomass was best accounted for by the exploitation rate's negative effect and the geographic distribution of fishing and recruitment. Thermal phenology and temperature adversely and egg predation positively impacted the early life stage mortality rate and, ultimately, adult biomass. These findings are broadly relevant to fisheries management, but particularly for 4VWX herring, where the current management approach does not consider their early life stage dynamics or assess them within the ecosystem or climate change contexts. The productivity and overall health of Scotian Shelf‐Bay of Fundy herring (NAFO Division 4VWX) have declined since 1965 and have failed to improve despite recovery measures in place since 2003. We evaluated potential drivers of herring decline by analyzing 52‐time series that describe the temporal and spatial evolution of the 4VWX herring population and the physical, ecological, and anthropogenic factors that could affect them using structural equation models. Variation in herring biomass was best explained by the adverse effect of exploitation rate and positive impact of the geographic distribution of fishing and recruitment, while thermal phenology, egg predation, and temperature impacted the early life stage mortality rate and, ultimately, adults’ biomass.
Geographic Variation in Opisthonema oglinum (Lesueur, 1818) in the Southeastern Brazilian Bight Inferred from Otolith Shape and Chemical Signatures
The thread herring Opisthonema oglinum (Lesueur, 1818) is a small pelagic fish distributed in the western margin of the Atlantic Ocean from the United States to Argentina. It is a target species for diverse commercial fisheries, including the Brazilian industrial purse seine fleets that operate in the Southeastern Brazilian Bight. To investigate the geographic variation in the thread herring populations in this fishing ground, sagittal otoliths were collected from two areas: Rio de Janeiro (RJ: 23°04′ S, 44°03′ W) and Santa Catarina (SC: 26°05′ S, 48°18′ W). Otolith shape analyses and multi-elemental signatures were statistically evaluated using elliptical Fourier descriptors and elemental/Ca ratios. Remarkable differences in the thread herring otoliths between the two areas were found. The previous scenario in which the thread herring constitutes a single panmictic population in the Atlantic Ocean is now debatable. The implications of these results in terms of rational fisheries management for this species are highlighted.
Assessing fisheries nutrient yields: The Northwest Atlantic, 1950–2014
Fisheries are important sources of nutrients for people, but fisheries science and management do not consider nutrient information. The result is that fisheries are conducted without knowledge of how exploited species portfolios produce nutrients, how these yields have changed over time, and how they may change in the future. Here, we develop approaches for nutrient-informed analysis, and illustrate their use by applying them to catches from northwest Atlantic fisheries from 1950 to 2014. Relative to catch weights, nutrient yields showed more change over time and greater degrees of concentration in fewer taxa. Species that were minor from a weight perspective were identified as key sources of specific nutrients. Atlantic herring (Clupea harengus) emerge as a cornerstone of regional nutrient yields, with recent yields of some nutrients so disproportionately reliant upon herring as to indicate a potential lack of resilience. Insights such as these emphasize the need for nutrient informed approaches to fisheries assessment.