Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
285
result(s) for
"Atmospheric circulation regimes"
Sort by:
Extreme Cold Wave over East Asia in January 2016
2019
It is argued that anthropogenic global warming may decrease the global occurrence of cold waves. However, a historical record-extreme cold wave, popularly called the “boss level” cold wave, attacked East Asia in January 2016, which gives rise to the discussion of why this boss-level cold wave occurred during the winter with the warmest recorded global mean surface air temperature (SAT). To explore the impacts of human-induced global warming and natural internal atmosphere variability, we investigated the cold-wave-related circulation regime (i.e., the large-scale atmospheric circulation pattern) and compared the observation with the large ensemble simulations of the MIROC5 model. Our results showed that this East Asian extreme cold-wave-related atmospheric circulation regime mainly exhibited an extremely strong anomaly of the Ural blocking high (UBH) and a record-breaking anomaly of the surface Siberian high (SH), and it largely originated from the natural internal atmosphere variability. However, because of the dynamic effect of Arctic amplification, anthropogenic global warming may increase the likelihood of extreme cold waves through shifting the responsible natural atmospheric circulation regime toward a stronger amplitude. The probability of occurrence of extreme anomalies of UBH, SH, and the East Asia area mean SAT have been increased by 58%, 57%, and 32%, respectively, as a consequence of anthropogenic global warming. Therefore, extreme cold waves in East Asia, such as the one in January 2016, may be an enhanced response to the larger internal atmospheric variability modulated by human-induced global warming.
Journal Article
Toward Identifying Subseasonal Forecasts of Opportunity Using North American Weather Regimes
by
Robertson, Andrew W.
,
Tippett, Michael K.
,
Vigaud, Nicolas
in
Atmospheric circulation
,
Atmospheric circulation regimes
,
Cluster analysis
2020
Large-scale atmospheric circulation regime structures are used to diagnose subseasonal forecasts of wintertime geopotential height fields over the North American sector, from the NCEP CFSv2 model. Four large-scale daily circulation regimes derived from reanalysis 500-hPa geopotential height data using K -means clustering are used as a low-dimensional basis for diagnosing the model’s forecasts up to 45 days ahead. On average, hindcast skill in regime space is found to be limited to 10–15 days ahead, in terms of anomaly correlation of 5-day averages of regime counts, over the 1999–2010 period. However, skill up to 30 days ahead is identified in individual winters, and intraseasonal episodes of high skill are identified using a forecast-evolution graphical tool. A striking vacillation between the West Coast and Pacific ridge patterns during December–January 2008/09 is shown to be predicted 20–25 days in advance, illustrating the possibility to identify “forecasts of opportunity” when subseasonal forecast skill is much higher than the average. The forecast-evolution tool also provides insight into the poor seasonal forecasts of California precipitation by operational centers during the 2015/16 El Niño winter. The Pacific trough regime is shown to be greatly overpredicted beyond 1–2 weeks in advance during the 2015/16 winter, with weather-scale features dominating the forecast evolution at shorter lead times. A similar though less extreme situation took place during the weaker El Niño of 2009/10, with the Pacific trough overforecast at S2S lead times.
Journal Article
Atmospheric Subseasonal Variability and Circulation Regimes
by
Zaplotnik, žiga
,
Žagar, Nedjeljka
,
Karami, Khalil
in
Amplitudes
,
Atmospheric circulation
,
Atmospheric circulation regimes
2020
The globally integrated subseasonal variability associated with the two main atmospheric circulation regimes, the balanced (or Rossby) and unbalanced (or inertia–gravity) regimes, is evaluated for the four reanalysis datasets: ERA-Interim, JRA-55, MERRA, and ERA5. The results quantify amplitudes and trends in midlatitude traveling and quasi-stationary Rossby wave patterns as well as in the equatorial wave activity across scales. A statistically significant reduction of subseasonal variability is found in Rossby waves with zonal wavenumber k = 6 along with an increase in variability in wavenumbers k = 3–5 in the summer seasons of both hemispheres. The four reanalyses also agree regarding increased variability in the large-scale Kelvin waves, mixed Rossby–gravity waves, and westward-propagating inertio-gravity waves with the lowest meridional mode. The amplitude and sign of trends in inertia–gravity modes with smaller zonal scales and greater meridional modes differ between the ERA-Interim and JRA-55 datasets on the one hand and the ERA5 and MERRA data on the other. An increased variability in the ERA-Interim and JRA-55 accounts for positive trends in their total subseasonal variability.
Journal Article
Aerosol above-cloud direct radiative effect and properties in the Namibian region during the AErosol, RadiatiOn, and CLOuds in southern Africa (AEROCLO-sA) field campaign – Multi-Viewing, Multi-Channel, Multi-Polarization (3MI) airborne simulator and sun photometer measurements
by
Delegove, Cyril
,
Nicolas, Jean-Marc
,
Blarel, Luc
in
Absorption
,
Aerosol optical depth
,
Aerosol properties
2021
We analyse the airborne measurements of above-cloud aerosols from the AErosol, RadiatiOn, and CLOuds in southern Africa (AEROCLO-sA) field campaign performed in Namibia during August and September 2017. The study aims to retrieve the aerosol above-cloud direct radiative effect (DRE) with well-defined uncertainties. To improve the retrieval of the aerosol and cloud properties, the airborne demonstrator of the Multi-Viewing, Multi-Channel, Multi-Polarization (3MI) satellite instrument, called the Observing System Including PolaRisation in the Solar Infrared Spectrum (OSIRIS), was deployed on-board the SAFIRE (Service des Avions Français Instrumentés pour la Rechercheen Environnement) Falcon 20 aircraft during 10 flights performed over land, over the ocean, and along the Namibian coast. The airborne instrument OSIRIS provides observations at high temporal and spatial resolutions for aerosol above clouds (AACs) and cloud properties. OSIRIS was supplemented with the Photomètre Léger Aéroporté pour la surveillance des Masses d'Air version 2 (PLASMA2). The combined airborne measurements allow, for the first time, the validation of AAC algorithms previously developed for satellite measurements. The variations in the aerosol properties are consistent with the different atmospheric circulation regimes observed during the deployment. Airborne observations typically show strong aerosol optical depth (AOD; up to 1.2 at 550 nm) of fine-mode particles from biomass burning (extinction Ångström exponent varying between 1.6 and 2.2), transported above bright stratocumulus decks (mean cloud top around 1 km above mean sea level), with cloud optical thickness (COT) up to 35 at 550 nm. The above-cloud visible AOD retrieved with OSIRIS agrees within 10 % of the PLASMA2 sun photometer measurements in the same environment. The single scattering albedo (SSA) is one of the most influential parameters on the AAC DRE calculation that remains largely uncertain in models. During the AEROCLO-sA campaign, the average SSA obtained by OSIRIS at 550 nm is 0.87, which is in agreement within 3 %, on average, with previous polarimetric-based satellite and airborne retrievals. The strong absorption of the biomass burning plumes in the visible range is generally consistent with the observations from the Aerosol Robotic Network (AERONET) ground-based sun photometers. This, however, shows a significant increase in the particles' absorption at 440 nm in northern Namibia and Angola, which indicates more absorbing organic species within the observed smoke plumes. Biomass burning aerosols are also vertically collocated, with significant amounts of water content up to the top of the plume at around 6 km height in our measurements. The detailed characterization of aerosol and cloud properties, water vapour, and their uncertainties obtained from OSIRIS and PLASMA2 measurements allows us to study their impacts on the AAC DRE. The high-absorbing load of AAC, combined with high cloud albedo, leads to unprecedented DRE estimates, which are higher than previous satellite-based estimates. The average AAC DRE calculated from the airborne measurements in the visible range is +85 W m−2 (standard deviation of 26 W m−2), with instantaneous values up to +190 W m−2 during intense events. These high DRE values, associated with their uncertainties, have to be considered as new upper cases in order to evaluate the ability of models to reproduce the radiative impact of the aerosols over the southeastern Atlantic region.
Journal Article
Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas: spatial distribution and interannual variability (2003–2011)
by
Gustafsson, Örjan
,
Semiletov, Igor P.
,
Pipko, Irina I.
in
Absorption
,
Aliphatic compounds
,
Allochthonous deposits
2018
The East Siberian Arctic Shelf (ESAS) is the broadest and shallowest continental shelf in the world. It is characterized by both the highest rate of coastal erosion in the world and a large riverine input of terrigenous dissolved organic matter (DOM). DOM plays a significant role in marine aquatic ecosystems. The chromophoric fraction of DOM (CDOM) directly affects the quantity and spectral quality of available light, thereby impacting both primary production and ultraviolet (UV) exposure in aquatic ecosystems. A multiyear study of CDOM absorption, fluorescence, and spectral characteristics was carried out over the vast ESAS in the summer–fall seasons. The paper describes observations accomplished at 286 stations and 1766 in situ high-resolution optical measurements distributed along the nearshore zone. Spatial and interannual CDOM dynamics over the ESAS were investigated, and driving factors were identified. It was shown that the atmospheric circulation regime is the dominant factor controlling CDOM distribution on the ESAS. This paper explores the possibility of using CDOM and its spectral parameters to identify the different biogeochemical regimes in the surveyed area. The analysis of CDOM spectral characteristics showed that the major part of the Laptev and East Siberian seas shelf is influenced by terrigenous DOM carried in riverine discharge. Western and eastern provinces of the ESAS with distinctly different DOM optical properties were also identified; a transition between the two provinces at around 165–170° E, also consistent with hydrological and hydrochemical data, is shown. In the western ESAS, a region of substantial river impact, the content of aromatic carbon within DOM remains almost constant. In the eastern ESAS, a gradual decrease in aromaticity percentage was observed, indicating contribution of Pacific-origin waters, where allochthonous DOM with predominantly aliphatic character and much smaller absorption capacity predominates. In addition, we found a stable tendency towards reduced concentrations of CDOM and dissolved lignin and an increase in spectral slope and slope ratio values eastward from the Lena River delta; the Lena is the main supplier of DOM to the eastern Arctic shelf. The strong positive correlation (r = 0.97) between dissolved organic carbon (DOC) and CDOM values in the surface shelf waters influenced by terrigenous discharge indicates that it is feasible to estimate DOC content from CDOM fluorescence assessed in situ using a WETStar fluorometer. This approach is reliable over the salinity range of 3 to 24.5. The fact that there is little difference between predicted and observed parameters indicates that the approach is justified. The direct estimation of DOM optical characteristics in the surface ESAS waters provided by this multiyear study will also be useful for validating and calibrating remote sensing data.
Journal Article
Increased Chances of Drought in Southeastern Periphery of the Tibetan Plateau Induced by Anthropogenic Warming
by
Ma, Shuangmei
,
Shiogama, Hideo
,
Zhou, Tianjun
in
Anthropogenic climate changes
,
Anthropogenic factors
,
Atmospheric circulation
2017
The southeastern periphery of the Tibetan Plateau (SEPTP) was hit by an extraordinarily severe drought in the autumn of 2009. Overall, the SEPTP has been gripped by a sustained drought for six consecutive years. To better understand the physical causes of these types of severe and frequent droughts and thus to improve their prediction and enhance the ability to adapt, many research efforts have been devoted to the disastrous droughts in the SEPTP. Nonetheless, whether the likelihood and strength of the severe droughts in the SEPTP, such as that in the autumn of 2009, have been affected by anthropogenic climate change remains unknown. This study first identifies the atmospheric circulation regime responsible for the SEPTP droughts and then explores how human-induced climate change has affected the severe droughts in the SEPTP. It is found that the drought conditions in the SEPTP have been driven by the Indian-Pacific warm pool (IPWP) sea surface temperature (SST) through strengthening of the local Hadley circulation and anomalously cyclonic motion over the South China Sea. Ensemble simulations of climate models demonstrate a robust increase in the dry and warm meteorological conditions seen during the 2009 SEPTP autumn drought due to anthropogenic global warming. Given that warming is expected to continue into the future, these results suggest that it is likely that drought conditions will become more common in the SEPTP.
Journal Article
Changes in the Atmospheric Circulation Conditions and Regional Climatic Characteristics in Two Remote Regions Since the Mid-20th Century
by
Solovyev, Aleksandr B.
,
Lupo, Anthony R.
,
Chendev, Yury G.
in
20th century
,
Agriculture
,
Anomalies
2019
A meridional Northern Hemisphere (NH) circulation epoch, which began in 1957, is marked by changes in the temperature and precipitation regimes over southwest Russia and central USA depending on the occurrence of NH atmospheric circulation regimes. A classification scheme proposed in 1968, and studied later put forth 13 NH circulation types, fitting more broadly into four groups, two of which are more zonal type flows and two of which are more meridional flows. Using the results of a previous study that showed four distinct sub-periods during the 1957–2017 epoch, the temperature and precipitation regimes of both regions were studied across all seasons in order to characterize modern day climate variability and their suitability for vegetation growth. Then the Hydrologic Coefficient, which combined the temperature and precipitation variables, was briefly studied. The most optimal conditions for vegetation growth, positive temperature and precipitation anomalies, were noted during the period 1970–1980 for southwest Russia, which was dominated by an increasingly more zonal flow regime in the Belgorod region and NH in general. For the central USA, the HTC showed more ideal conditions for agriculture in recent years due to favorable precipitation occurrence. In southwest Russia, variable precipitation regimes were noted during the meridional flow periods, and with the increase in temperature (since 1998), these can adversely affect the hydrothermal characteristics of the growing season. Finally, a comparison of the 13 NH circulation types with several teleconnection indexes demonstrated the robustness of the NH flow regime classification scheme used here.
Journal Article
Sensitive versus Rough Dependence under Initial Conditions in Atmospheric Flow Regimes
by
Li, Y.
,
Simpson, Micheal
,
Feng, Z.
in
Archives & records
,
Atmospheric circulation regimes
,
Atmospheric data
2016
In this work, we will identify the existence of “rough dependence on initial conditions” in atmospheric phenomena, a concept which is a problem for weather analysis and forecasting. Typically, two initially similar atmospheric states will diverge slowly over time such that forecasting the weather using the Navier-Stokes equations is useless after some characteristic time scale. With rough dependence, two initial states diverge very quickly, implying forecasting may be impossible. Using previous research in atmospheric science, rough dependence is characterized by using quantities that can be calculated using atmospheric data and quantities. Rough dependence will be tested for and identified in atmospheric phenomena at different time scales using case studies. Data were provided for this project by archives outside the University of Missouri (MU) and by using the MU RADAR at the South Farm experiment station.
Journal Article
Changes in Air Temperatures and Atmosphere Circulation in High Mountainous Parts of Bulgaria for the Period 1941 - 2008
2012
Changes of air temperatures and atmosphere circulation at three high mountainous stations in Bulgaria are investigated for the period of 1941-2008.The three stations are located on peaks Musala,Cherni vrah and Botev,where air temperature data have good quality.Some missing data were recovered using the method of differences. A significant mean annual air temperature rise happened in high mountainous parts of Bulgaria- the warming is in the order of 0.7°C for the entire period.The increase is very prominent particularly in the last 30 years.Main contributors to this overall tendency are summer months-June,July and August.To some degree,January also could be included in this group.November trend shows temperature rise at the beginning of the investigated period.One of the causes for such a tendency is atmosphere circulation in respective months.It also shows signs of considerable reorganization in both winter and summer.There is an increase of the cases of warm atmosphere patterns typical for winter, summer and autumn seasons in Bulgaria.Meridional circulation has essential significance for air temperatures during the cold half of the year.In January and June atmosphere circulation has a substantial influence on the thermal regime of air in high mountains of Bulgaria.In July,August and November this influence is reduced.There are no cycles in air temperatures for the investigated period.
Journal Article
On the structure and variability of atmospheric circulation regimes in coupled climate models
by
Dethloff, Klaus
,
Weisheimer, Antje
,
Handorf, Dörthe
in
Atmospheric circulation
,
atmospheric circulation regimes
,
Climate
2001
In order to investigate whether climate models of different complexity have the potential to simulate natural atmospheric circulation regimes, 1000‐year‐long integrations with constant external forcing have been analysed. Significant non‐Gaussian uni‐, bi‐, and trimodal probability density functions have been found in 100‐year segments. Copyright © 2001 Royal Meteorological Society.
Journal Article