Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
131,792
result(s) for
"Atmospheric models"
Sort by:
Global atmospheric and oceanic modelling : fundamental equations
\"Global Atmospheric and Oceanic Modelling Combining rigorous theory with practical application, this book provides a unified and detailed account of the fundamental equations governing atmospheric and oceanic fluid flow on which global, quantitative models of weather and climate prediction are founded. It lays the foundation for more accurate models by making fewer approximations and imposing dynamical and thermodynamical consistency, moving beyond the assumption that the Earth is perfectly spherical. A general set of equations is developed in a standard notation with clearly stated assumptions, limitations, and important properties. Some exact, non-linear solutions are developed to promote further understanding and for testing purposes. This book contains a thorough consideration of the fundamental equations for atmospheric and oceanic models, and is therefore invaluable to both theoreticians and numerical modellers. It also stands as an accessible source for reference purposes. Andrew N. Staniforth - now retired - led the development of dynamical cores for weather and climate prediction at two national centres (Canada and the UK). He has published over 100 peer-reviewed journal articles, and is the recipient of various prizes and awards including: the Editor's Award (American Meteorological Society, 1990); the Andrew Thompson Prize (Canadian Meteorological and Oceanographic Society, 1993); and the Buchan and Adrian Gill Prizes (Royal Meteorological Society, 2007 and 2009)\"-- Provided by publisher.
The Atmospheric Response to Three Decades of Observed Arctic Sea Ice Loss
2013
Arctic sea ice is declining at an increasing rate with potentially important repercussions. To understand better the atmospheric changes that may have occurred in response to Arctic sea ice loss, this study presents results from atmospheric general circulation model (AGCM) experiments in which the only time-varying forcings prescribed were observed variations in Arctic sea ice and accompanying changes in Arctic sea surface temperatures from 1979 to 2009. Two independent AGCMs are utilized in order to assess the robustness of the response across different models. The results suggest that the atmospheric impacts of Arctic sea ice loss have been manifested most strongly within the maritime and coastal Arctic and in the lowermost atmosphere. Sea ice loss has driven increased energy transfer from the ocean to the atmosphere, enhanced warming and moistening of the lower troposphere, decreased the strength of the surface temperature inversion, and increased lower-tropospheric thickness; all of these changes are most pronounced in autumn and early winter (September–December). The early winter (November–December) atmospheric circulation response resembles the negative phase of the North Atlantic Oscillation (NAO); however, the NAO-type response is quite weak and is often masked by intrinsic (unforced) atmospheric variability. Some evidence of a late winter (March–April) polar stratospheric cooling response to sea ice loss is also found, which may have important implications for polar stratospheric ozone concentrations. The attribution and quantification of other aspects of the possible atmospheric response are hindered by model sensitivities and large intrinsic variability. The potential remote responses to Arctic sea ice change are currently hard to confirm and remain uncertain.
Journal Article
A Review of Antarctic Surface Snow Isotopic Composition
by
Frezzotti, M.
,
Isaksson, E.
,
Schmidt, G. A.
in
Antarctic regions
,
Atmospheric circulation
,
Atmospheric models
2008
A database of surface Antarctic snow isotopic composition is constructed using available measurements, with an estimate of data quality and local variability. Although more than 1000 locations are documented, the spatial coverage remains uneven with a majority of sites located in specific areas of East Antarctica. The database is used to analyze the spatial variations in snow isotopic composition with respect to geographical characteristics (elevation, distance to the coast) and climatic features (temperature, accumulation) and with a focus on deuterium excess. The capacity of theoretical isotopic, regional, and general circulation atmospheric models (including “isotopic” models) to reproduce the observed features and assess the role of moisture advection in spatial deuterium excess fluctuations is analyzed.
Journal Article
Factor Separation in the Atmosphere : Applications and Future Prospects
\"Modeling atmospheric processes in order to forecast the weather or future climate change is an extremely complex and computationally intensive undertaking. One of the main difficulties is that there are a huge number of factors that need to be taken into account, some of which are still poorly understood. The Factor Separation (FS) method is a computational procedure that helps deal with these nonlinear factors. In recent years many scientists have applied FS methodology to a range of modeling problems, including paleoclimatology, limnology, regional climate change, rainfall analysis, cloud modeling, pollution, crop growth, and other forecasting applications. This book is the first to describe the fundamentals of the method, and to bring together its many applications in the atmospheric sciences. The main audience is researchers and graduate students using the FS method, but it is also of interest to advanced students, researchers, and professionals across the atmospheric sciences\"-- Provided by publisher.
The Climatology and Interannual Variability of East Asian Summer Monsoon in CMIP5 Coupled Models
2014
The climatology and interannual variability of the East Asian summer monsoon (EASM) simulated by 34 coupled general circulation models (CGCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are evaluated. To estimate the role of air–sea coupling, 17 CGCMs are compared to their corresponding atmospheric general circulation models (AGCMs). The climatological low-level monsoon circulation and mei-yu/changma/baiu rainfall band are improved in CGCMs from AGCMs. The improvement is at the cost of the local cold sea surface temperature (SST) biases in CGCMs, since they decrease the surface evaporation and enhance the circulation. The interannual EASM pattern is evaluated by a skill formula and the highest/lowest eight models are selected to investigate the skill origins. The observed Indian Ocean (IO) warming, tropical eastern Indian Ocean (TEIO) rainfall anomalies, and Kelvin wave response are captured well in high-skill models, while these features are not present in low-skill models. Further, the differences in the IO warming between high-skill and low-skill models are rooted in the preceding ENSO simulation. Hence, the IO–western Pacific anticyclone (WPAC) teleconnection is important for CGCMs, similar to AGCMs. However, compared to AGCMs, the TEIO SST anomaly is warmer in CGCMs, since the easterly wind anomalies in the southern flank of the WPAC reduce the climatological monsoon westerlies and decrease the surface evaporation. The warmer TEIO induces the stronger precipitation anomaly and intensifies the teleconnection. Hence, the interannual EASM pattern is better simulated in CGCMs than that in AGCMs.
Journal Article
The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 1. Simulation Characteristics With Prescribed SSTs
2018
In this two‐part paper, a description is provided of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). This version, with roughly 100 km horizontal resolution and 33 levels in the vertical, contains an aerosol model that generates aerosol fields from emissions and a “light” chemistry mechanism designed to support the aerosol model but with prescribed ozone. In Part 1, the quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode—with prescribed sea surface temperatures (SSTs) and sea‐ice distribution—is described and compared with previous GFDL models and with the CMIP5 archive of AMIP simulations. The model's Cess sensitivity (response in the top‐of‐atmosphere radiative flux to uniform warming of SSTs) and effective radiative forcing are also presented. In Part 2, the model formulation is described more fully and key sensitivities to aspects of the model formulation are discussed, along with the approach to model tuning.
Key Points
A description is provided of the AM4.0/LM4.0 model that will serve as a base for a new set of GFDL/NOAA climate and Earth system models
The simulation quality in AMIP mode is described and compared with previous GFDL models and with the CMIP5 archive of AMIP simulations
The model's Cess sensitivity and effective radiative forcing are presented
Journal Article
The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning Strategies
2018
In Part 2 of this two‐part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken to tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.
Key Points
Part 2 of the AM4.0/LM4.0 paper provides documentation of key changes in individual components from previous GFDL models
Some sensitivities to choices of model formulation and parameter values are presented with emphasis on convection and tuning of clouds
We describe the extent to which the effect on aerosol forcing and Cess sensitivity has been taken into account during model development
Journal Article
Global Climate Simulated by the Seoul National University Atmosphere Model Version 0 with a Unified Convection Scheme (SAM0-UNICON)
2019
As a contribution to phase 6 of the Coupled Model Intercomparison Project (CMIP6), the global climate simulated by an atmospheric general circulation model (GCM), the Seoul National University Atmosphere Model version 0 with a Unified Convection Scheme (SAM0-UNICON), is compared with observation and climates simulated by the Community Atmosphere Model version 5 (CAM5) and Community Earth System Model version 1 (CESM1), on which SAM0-UNICON is based. Both SAM0-UNICON and CESM1 successfully reproduce observed global warming after 1970. The global mean climate simulated by SAM0-UNICON is roughly similar to that of CAM5/CESM1. However, SAM0-UNICON improves the simulations of the double intertropical convergence zone, shortwave cloud forcing, near-surface air temperature, aerosol optical depth, sea ice fraction, and sea surface temperature (SST), but is slightly poorer for the simulation of tropical relative humidity, Pacific surface wind stress, and ocean rainfall. Two important biases in the simulated mean climate in both models are a set of horseshoe-shaped biases of SST, sea level pressure, precipitation, and cloud radiative forcings in the central equatorial Pacific and a higher sea ice fraction in the Arctic periphery and Southern Hemispheric circumpolar regions. Both SAM0-UNICON and CESM1 simulate the observed El Niño–Southern Oscillation (ENSO) reasonably well. However, compared with CAM5/CESM1, SAM0-UNICON performs better in simulating the Madden–Julian oscillation (MJO), diurnal cycle of precipitation, and tropical cyclones. The aerosol indirect effect (AIE) simulated by SAM0-UNICON is similar to that from CAM5 but the magnitudes of the individual shortwave and longwave AIEs are substantially reduced.
Journal Article