Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,478
result(s) for
"Atomic clocks"
Sort by:
Long-lived Bell states in an array of optical clock qubits
by
Young, Aaron W.
,
Martin, Michael J.
,
Eckner, William J.
in
639/766/483/1255
,
639/766/483/481
,
Accuracy
2022
The generation of long-lived entanglement in optical atomic clocks is one of the main goals of quantum metrology. Arrays of neutral atoms, where Rydberg-based interactions may generate entanglement between individually controlled and resolved atoms, constitute a promising quantum platform to achieve this. Here we leverage the programmable state preparation afforded by optical tweezers and the efficient strong confinement of a three-dimensional optical lattice to prepare an ensemble of strontium-atom pairs in their motional ground state. We engineer global single-qubit gates on the optical clock transition and two-qubit entangling gates via adiabatic Rydberg dressing, enabling the generation of Bell states with a state-preparation-and-measurement-corrected fidelity of 92.8(2.0)% (87.1(1.6)% without state-preparation-and-measurement correction). For use in quantum metrology, it is furthermore critical that the resulting entanglement be long lived; we find that the coherence of the Bell state has a lifetime of 4.2(6) s via parity correlations and simultaneous comparisons between entangled and unentangled ensembles. Such long-lived Bell states can be useful for enhancing metrological stability and bandwidth. In the future, atomic rearrangement will enable the implementation of many-qubit gates and cluster state generation, as well as explorations of the transverse field Ising model.
Long-lived entanglement is a key resource for quantum metrology with optical clocks. Rydberg-based entangling gates within arrays of neutral atoms enable the generation of clock-transition Bell states with high fidelity and long coherence times.
Journal Article
Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks
2020
We search for transient variations of the fine structure constant using data from a European network of fiber-linked optical atomic clocks. By searching for coherent variations in the recorded clock frequency comparisons across the network, we significantly improve the constraints on transient variations of the fine structure constant. For example, we constrain the variation to |δα/α| < 5 × 10−17 for transients of duration 103 s. This analysis also presents a possibility to search for dark matter, the mysterious substance hypothesised to explain galaxy dynamics and other astrophysical phenomena that is thought to dominate the matter density of the universe. At the current sensitivity level, we find no evidence for dark matter in the form of topological defects (or, more generally, any macroscopic objects), and we thus place constraints on certain potential couplings between the dark matter and standard model particles, substantially improving upon the existing constraints, particularly for large (≳104 km) objects.
Journal Article
Algorithm for Taming Rubidium Atomic Clocks Based on Longwave (Loran-C) Timing Signals
2025
This paper explores effective methods for taming rubidium atomic clocks with longwave timing signals. In an in-depth analysis of the time-difference data between the 1PPS timing signal output from the ground-wave signal received by a long-wave receiver and the 1PPS signal from UTC, we observe that the time-difference data has significant short-term jitter and long-term periodicity effects. To meet this challenge, we adopt several innovative strategies. First, we use the Fourier transform algorithm to analyse the time-frequency characteristics of the time-difference data in detail and accordingly propose a de-jittering correction algorithm for the long-wave timing data, which is aimed at improving the stability of the long-wave timing signals. Secondly, the time difference model of the rubidium clock is innovatively modified, and a quadratic polynomial superimposed with a periodic fluctuation term is constructed, which can accurately solve and eliminate the periodic components and obtain smoother time difference data. Finally, the parameters of the rubidium clock are accurately estimated by the least-squares method using the corrected smoother time difference data, and the output frequency of the rubidium clock is adjusted accordingly so that the rubidium clock is tamed effectively by the long-wave timing signal successfully. The experimental results show that the long-term stability of the tamed rubidium clock is significantly improved to 3.52 × 10−13/100,000 s; meanwhile, the phase deviation of the output 1PPS from the UTC of the tamed rubidium clock after entering the stabilisation period is kept within 25 ns.
Journal Article
Test and Analysis of Timekeeping Performance of Atomic Clock
by
Li, Chong
,
Li, Shuaichen
,
Wu, Jianfeng
in
Accuracy
,
atomic clock noise type
,
cesium atomic clock
2022
At present, there are few articles about the timekeeping performance of domestic atomic clocks in their moving state. In this paper, the frequency stability changes of hydrogen atomic and cesium atomic clocks in stationary and moving states are compared and analyzed; the frequency stability of the atomic clock at the beginning of its transition from moving state to stationary state is tested and analyzed; the influence of three main noises of atomic clocks on frequency stability is analyzed; and finally, the difference in the predictability of atomic clocks in moving and stationary states is analyzed. The results show that: (1) in the moving state, the frequency stability of a hydrogen clock decreases by 1–2 orders of magnitude, and the frequency stability of a cesium clock decreases by 0.5 orders of magnitude; (2) in the recovery stage, the frequency stability of hydrogen and cesium clocks is between that in static and moving stages, but the frequency stability fluctuates greatly in this stage; (3) in the moving state, the three main noises of the atomic clock all increase, of which the increase in the white noise of phase modulation is the largest, indicating that it is the most sensitive to vibration and has the greatest impact on the frequency stability of the atomic clock during the moving period; (4) in the mobile state, the RMS of the prediction data of the hydrogen clock and cesium clock greatly increases compared with that in the static state.
Journal Article
Precise Cross-Sea Orthometric Height Determination Using GNSS Carrier-Phase Time-Frequency Transfer
2025
What are the main findings? * A simulation with two IGS stations (>8000 km apart) indicates that the GFS-PPP method enables remote OH determination. With 10[sup.−18]-level ground clocks, the intercontinental-scale OH determination is expected to reach an accuracy of approximately 20 cm. * A multi-period joint-measurement strategy—aggregating sessions with stability-based weights—suppresses stochastic errors and enhances robustness, improving the reliability and accuracy of remote OH determination to the centimeter level. A simulation with two IGS stations (>8000 km apart) indicates that the GFS-PPP method enables remote OH determination. With 10[sup.−18]-level ground clocks, the intercontinental-scale OH determination is expected to reach an accuracy of approximately 20 cm. A multi-period joint-measurement strategy—aggregating sessions with stability-based weights—suppresses stochastic errors and enhances robustness, improving the reliability and accuracy of remote OH determination to the centimeter level. What are the implications of the main findings? * The findings quantify the practical limits of GNSS PPP time-frequency transfer and assess the achievable accuracy and performance bounds of the GFS-PPP approach for remote geopotential and OH determination. * The proposed stability-weighted multi-period joint-measurement strategy offers practical pathway toward centimeter-level cross-sea OH determination, thereby positioning GFS-PPP as a promising technique for establishing a high-precision IHRS. The findings quantify the practical limits of GNSS PPP time-frequency transfer and assess the achievable accuracy and performance bounds of the GFS-PPP approach for remote geopotential and OH determination. The proposed stability-weighted multi-period joint-measurement strategy offers practical pathway toward centimeter-level cross-sea OH determination, thereby positioning GFS-PPP as a promising technique for establishing a high-precision IHRS. State-of-the-art atomic clocks, in combination with high-precision time-frequency transfer techniques, have established a novel relativistic geodetic approach for determining the Earth’s geopotential. By exploiting ultra-stable atomic clocks and GNSS Precise Point Positioning (PPP) time-frequency transfer, this study investigates the cross-sea Orthometric Height (OH) determination between two remote stations separated by over 8000 km, corresponding to an OH difference of approximately 2260 m. Simulation results indicate that, when employing clocks with a frequency stability of 1 × 10[sup.−18], the remote OH determination could achieve a limiting accuracy of approximately 20 cm. This limitation is primarily attributed to the finite precision of the PPP time-frequency transfer, which constrains the ultimate performance of the OH determination. Furthermore, aggregating multiple observation periods could further enhance the accuracy to approximately 6 cm. These findings demonstrate that the PPP time-frequency transfer facilitates high-precision OH determination over intercontinental distances and thereby provides a feasible pathway toward the realization of a centimeter-level International Height Reference System (IHRS).
Journal Article
Chip-scale atomic clock (CSAC) aided GNSS in urban canyons
2024
In urban canyons, the reflections and obstructions of Global Navigation Satellite System (GNSS) signals frequently lead to significant errors in measurements, the number of which can be larger than that of the correct measurements. This leads to a severe degradation of GNSS performance in urban canyons. Various fault detection and exclusion (FDE) algorithms have been developed to cope with these outliers caused by multipath effects. Most of these FDE algorithms check the consistency among measurements. However, in urban canyons, their effectiveness is significantly compromised by the lack of fault-free measurements. There is an urgent need to develop new constraints for enhancing GNSS FDE performance. In recent years, the advent of Chip-Scale Atomic Clock (CSAC), known for their affordability and high frequency stability, offers a promising solution for accurately predicting receiver clock errors. Additionally, using city maps to establish height constraints is another way to increase redundancy. The purpose of this study is to improve the GNSS positioning accuracy in urban canyons with the aid of CSAC and city map data. A novel FDE algorithm is developed to search for positions through the constraints of height and receiver clock. Extensive tests were conducted in urban canyons to evaluate the performance of the system. Results showed that the positioning accuracy can be improved from tens of meters to less than 6 m.
Journal Article
Long-Term Stability Improvements of the Miniature Atomic Clock Through Enhanced Thermal Environmental Control
by
Bandi, Thejesh N.
,
Gokie, Emily
,
Omaraie, Jon
in
alternate-PNT
,
chip-scale atomic clock (CSAC)
,
Clocks & watches
2025
Advancement of compact atomic clocks has centered on reducing footprint and power consumption. Such developments come at the cost of the clock’s stability performance. Various commercial and military applications demand reduced size, weight, and power (SWaP) requirements but desire an enhanced stability performance beyond what is achieved with the lower-profile standards, such as Microchip’s chip-scale atomic clock (CSAC) or miniature atomic clock (MAC). Furthermore, a high-performing space-rated clock will enhance small satellite missions by providing capability for alternate PNT, one-way radiometric ranging, and eventual lunar PNT purposes. The MAC is a strong candidate as it has modest SWaP parameters. Enhanced performance improvement to the MAC, particularly in the medium to long-term stability over a day and beyond will strengthen its candidacy as an on-board clock in small satellite missions and other ground-based applications. In this work, using external thermal control methods, we demonstrate an improvement of the MAC performance by at least a factor of five, showing a superior stability of σy = 4.2 × 10−13 compared to the best-performing miniaturized standard on the market for averaging intervals of τ > 104 s up to 4 days.
Journal Article
Determination of a high spatial resolution geopotential model using atomic clock comparisons
2017
Recent technological advances in optical atomic clocks are opening new perspectives for the direct determination of geopotential differences between any two points at a centimeter-level accuracy in geoid height. However, so far detailed quantitative estimates of the possible improvement in geoid determination when adding such clock measurements to existing data are lacking. We present a first step in that direction with the aim and hope of triggering further work and efforts in this emerging field of chronometric geodesy and geophysics. We specifically focus on evaluating the contribution of this new kind of direct measurements in determining the geopotential at high spatial resolution (
≈
10 km). We studied two test areas, both located in France and corresponding to a middle (Massif Central) and high (Alps) mountainous terrain. These regions are interesting because the gravitational field strength varies greatly from place to place at high spatial resolution due to the complex topography. Our method consists in first generating a synthetic high-resolution geopotential map, then drawing synthetic measurement data (gravimetry and clock data) from it, and finally reconstructing the geopotential map from that data using least squares collocation. The quality of the reconstructed map is then assessed by comparing it to the original one used to generate the data. We show that adding only a few clock data points (less than 1% of the gravimetry data) reduces the bias significantly and improves the standard deviation by a factor 3. The effect of the data coverage and data quality on the results is investigated, and the trade-off between the measurement noise level and the number of data points is discussed.
Journal Article
Atomic combination clocks
2018
Atomic clocks use atomic transitions as frequency references. The susceptibility of the atomic transition to external fields limits clock stability and introduces systematic frequency shifts. Here, we propose to realize an atomic clock that utilizes an entangled superposition of states of multiple atomic species, where the reference frequency is a sum of the individual transition frequencies. The superposition is selected such that the susceptibilities of the respective transitions, in individual species, partially cancel leading to improved stability and a reduction in the corresponding systematic shifts. We present and analyze two examples of such combinations. The first uses the optical quadrupole transitions in a 40 Ca+- 174 Yb+ two-ion system. The second is a superposition of optical quadrupole transitions in one 88 Sr+ ion and three 202 Hg+ ions. These combinations have reduced susceptibility to external magnetic fields and blackbody radiation.
Journal Article
Performance of the BDS3 experimental satellite passive hydrogen maser
by
Liu, Li
,
Hu, Xiaogong
,
Xie, Yonghui
in
Atomic clocks
,
Autonomous navigation
,
BeiDou Navigation Satellite System
2018
Various types of onboard atomic clocks such as rubidium, cesium and hydrogen have different frequency accuracies and frequency drift rate characteristics. A passive hydrogen maser (PHM) has the advantage of low-frequency drift over a long period, which is suitable for long-term autonomous satellite time keeping. The third generation of Beidou Satellite Navigation System (BDS3) is equipped with PHMs which have been independently developed by China for their IGSO and MEO experimental satellites. Including Galileo, it is the second global satellite navigation system that uses PHM as a frequency standard for navigation signals. We briefly introduce the PHM design at the Shanghai Astronomical Observatory (SHAO) and detailed performance evaluation of in-orbit PHMs. Using the high-precision clock values obtained by satellite-ground and inter-satellite measurement and communication systems, we analyze the frequency stability, clock prediction accuracy and clock rate variation characteristics of the BDS3 experimental satellites. The results show that the in-orbit PHM frequency stability of the BDS3 is approximately 6 × 10−15 at 1-day intervals, which is better than those of other types of onboard atomic clocks. The BDS3 PHM 2-, 10-h and 7-day clock prediction precision values are 0.26, 0.4 and 2.2 ns, respectively, which are better than those of the BDS3 rubidium clock and most of the GPS Block IIF and Galileo clocks. The BDS3 PHM 15-day clock rate variation is − 1.83 × 10−14 s/s, which indicates an extremely small frequency drift. The 15-day long-term stability results show that the BDS3 PHM in-orbit stability is roughly the same as the ground performance test. The PHM is expected to provide a highly stable time and frequency standard in the autonomous navigation case.
Journal Article