Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
22,261
result(s) for
"Auditory perception."
Sort by:
CDP-choline and galantamine, a personalized α7 nicotinic acetylcholine receptor targeted treatment for the modulation of speech MMN indexed deviance detection in healthy volunteers: a pilot study
by
Knott Verner
,
Blais, Crystal M
,
Smith, Dylan
in
Acetylcholine receptors (nicotinic)
,
Allosteric properties
,
Choline
2020
RationaleThe combination of CDP-choline, an α7 nicotinic acetylcholine receptor (α7 nAChR) agonist, with galantamine, a positive allosteric modulator of nAChRs, is believed to counter the fast desensitization rate of the α7 nAChRs and may be of interest for schizophrenia (SCZ) patients. Beyond the positive and negative clinical symptoms, deficits in early auditory prediction-error processes are also observed in SCZ. Regularity violations activate these mechanisms that are indexed by electroencephalography-derived mismatch negativity (MMN) event-related potentials (ERPs) in response to auditory deviance.Objectives/methodsThis pilot study in thirty-three healthy humans assessed the effects of an optimized α7 nAChR strategy combining CDP-choline (500 mg) with galantamine (16 mg) on speech-elicited MMN amplitude and latency measures. The randomized, double-blinded, placebo-controlled, and counterbalanced design with a baseline stratification method allowed for assessment of individual response differences.ResultsIncreases in MMN generation mediated by the acute CDP-choline/galantamine treatment in individuals with low baseline MMN amplitude for frequency, intensity, duration, and vowel deviants were revealed.ConclusionsThese results, observed primarily at temporal recording sites overlying the auditory cortex, implicate α7 nAChRs in the enhancement of speech deviance detection and warrant further examination with respect to dysfunctional auditory deviance processing in individuals with SCZ.
Journal Article
Human and machine hearing : extracting meaning from sound
\"If we understood more about how humans hear, we could make machines hear better, in the sense of being able to analyze sound and extract useful and meaningful information from it. Or so I claim. I have been working for decades, but more intensely in recent years, to add some substance to this claim, and to help engineers and scientists understand how the pieces fit together, so they can help move the art forward. There is still plenty to be done, and this book is my attempt to help focus the effort in this field into productive directions; to help new practitioners see enough of the evolution of ideas that they can skip to where new developments and experiments are needed, or to techniques that can already solve their sound understanding problems. The book-writing process has been tremendous fun, with support from family, friends, and colleagues. They do, however, have a tendency to ask two annoying questions: \"Is the book done yet?\" and \"Who is your audience?\" The first eventually answers itself, but I need to say a few words about the second. I find that interest in sound and hearing comes from people of many different disciplines, with complementary backgrounds and sometimes incompatible terminology and concepts. I want all of these people as my audience, as I want to teach a synthesis of their various viewpoints into a more comprehensive framework that includes everything needed to work on machine hearing problems. That is, electrical engineers, computer scientists, physicists, physiologists, audiologists, musicians, psychologists, and others are all part of my audience. Students, teachers, researchers, product managers, developers, and hackers are, too\"-- Provided by publisher.
Transcranial direct current stimulation (tDCS) elicits stimulus-specific enhancement of cortical plasticity
by
Sponheim, Scott R.
,
Fiecas, Mark
,
Lim, Kelvin O.
in
Adult
,
Auditory Cortex - physiology
,
Auditory evoked potentials
2020
Deficits in plasticity underlie many severe psychiatric disorders. Transcranial direct current stimulation (tDCS) is a promising method for modulating plasticity. However, given its non-focal nature, there are open questions as to how targeting and outcome specificity can best be achieved.
Understanding how tDCS interacts with concurrent brain activity is necessary for the rational advancement of tDCS. In the present study, we use an event-related potential (ERP) paradigm to assess the stimulus-specific effects of tDCS on cortical plasticity.
22 healthy volunteers underwent a blinded, sham-controlled plasticity paradigm in a crossover design. High frequency presentation of auditory stimuli was used to induce potentiation in specific components of the ERP. We investigated whether anodal tDCS targeting the auditory cortex would modulate plasticity induction across time. Two pure tones were used as stimuli, only one of the tones, the target tone, was used for plasticity induction. Plasticity was quantified as change in the mean amplitude of the N100 component relative to baseline.
TDCS significantly modulated plasticity in the target tone compared to sham (p = 0.02) but had no effect on the control tone (p = 0.73). This effect was time dependent, with tDCS effects no longer apparent 30 min after stimulation.
Our results indicate that tDCS can modulate cortical plasticity in the auditory cortex in an activity-dependent manner. These findings bolster the idea that tDCS can be an effective tool to target and modulate plasticity both for research and therapeutic purposes.
Journal Article
Dopamine modulates the reward experiences elicited by music
2019
Understanding how the brain translates a structured sequence of sounds, such as music, into a pleasant and rewarding experience is a fascinating question which may be crucial to better understand the processing of abstract rewards in humans. Previous neuroimaging findings point to a challenging role of the dopaminergic system in music-evoked pleasure. However, there is a lack of direct evidence showing that dopamine function is causally related to the pleasure we experience from music. We addressed this problem through a double blind within-subject pharmacological design in which we directly manipulated dopaminergic synaptic availability while healthy participants (n = 27) were engaged in music listening. We orally administrated to each participant a dopamine precursor (levodopa), a dopamine antagonist (risperidone), and a placebo (lactose) in three different sessions. We demonstrate that levodopa and risperidone led to opposite effects in measures of musical pleasure and motivation: while the dopamine precursor levodopa, compared with placebo, increased the hedonic experience and music-related motivational responses, risperidone led to a reduction of both. This study shows a causal role of dopamine in musical pleasure and indicates that dopaminergic transmission might play different or additive roles than the ones postulated in affective processing so far, particularly in abstract cognitive activities.
Journal Article
A supramodal accumulation-to-bound signal that determines perceptual decisions in humans
by
O'Connell, Redmond G
,
Kelly, Simon P
,
Dockree, Paul M
in
631/378/1697
,
631/378/2649/1409
,
Accuracy
2012
This study uses EEG in humans to isolate and track an evolving, domain-general decision signal, which varies with accumulated evidence, but is independent of overt actions.
In theoretical accounts of perceptual decision-making, a decision variable integrates noisy sensory evidence and determines action through a boundary-crossing criterion. Signals bearing these very properties have been characterized in single neurons in monkeys, but have yet to be directly identified in humans. Using a gradual target detection task, we isolated a freely evolving decision variable signal in human subjects that exhibited every aspect of the dynamics observed in its single-neuron counterparts. This signal could be continuously tracked in parallel with fully dissociable sensory encoding and motor preparation signals, and could be systematically perturbed mid-flight during decision formation. Furthermore, we found that the signal was completely domain general: it exhibited the same decision-predictive dynamics regardless of sensory modality and stimulus features and tracked cumulative evidence even in the absence of overt action. These findings provide a uniquely clear view on the neural determinants of simple perceptual decisions in humans.
Journal Article
Inherent auditory skills rather than formal music training shape the neural encoding of speech
2018
Musical training is associated with a myriad of neuroplastic changes in the brain, including more robust and efficient neural processing of clean and degraded speech signals at brainstem and cortical levels. These assumptions stem largely from cross-sectional studies between musicians and nonmusicians which cannot address whether training itself is sufficient to induce physiological changes or whether preexisting superiority in auditory function before training predisposes individuals to pursue musical interests and appear to have similar neuroplastic benefits as musicians. Here, we recorded neuroelectric brain activity to clear and noise-degraded speech sounds in individuals without formal music training but who differed in their receptive musical perceptual abilities as assessed objectively via the Profile of Music Perception Skills. We found that listeners with naturally more adept listening skills (“musical sleepers”) had enhanced frequency-following responses to speech that were also more resilient to the detrimental effects of noise, consistent with the increased fidelity of speech encoding and speech-in-noise benefits observed previously in highly trained musicians. Further comparisons between these musical sleepers and actual trained musicians suggested that experience provides an additional boost to the neural encoding and perception of speech. Collectively, our findings suggest that the auditory neuroplasticity of music engagement likely involves a layering of both preexisting (nature) and experience-driven (nurture) factors in complex sound processing. In the absence of formal training, individuals with intrinsically proficient auditory systems can exhibit musician-like auditory function that can be further shaped in an experience-dependent manner.
Journal Article