Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
653
result(s) for
"Auroral Physics"
Sort by:
A quantitative study of magnetospheric magnetic field line deformation by a two-loop substorm current wedge
by
Tsyganenko, N. A.
,
Angelopoulos, V.
,
Kubyshkina, M. V.
in
Analysis
,
Auroral observations
,
Auroral streamers
2015
Substorm current wedge (SCW) formation is associated with global magnetic field reconfiguration during substorm expansion. We combine a two-loop model SCW (SCW2L) with a background magnetic field model to investigate distortion of the ionospheric footpoint pattern in response to changes of different SCW2L parameters. The SCW-related plasma sheet footprint shift results in formation of a pattern resembling an auroral bulge, the poleward expansion of which is controlled primarily by the total current in the region 1 sense current loop (I1). The magnitude of the footprint latitudinal shift may reach ∼ 10° corrected geomagnetic latitude (CGLat) during strong substorms (I1= 2 MA). A strong helical magnetic field around the field-aligned current generates a surge-like region with embedded spiral structures, associated with a westward traveling surge (WTS) at the western end of the SCW. The helical field may also contribute to rotation of the ionospheric projection of narrow plasma streams (auroral streamers). Other parameters, including the total current in the second (region 2 sense) loop, were found to be of secondary importance. Analyzing two consecutive dipolarizations on 17 March 2010, we used magnetic variation data obtained from a dense midlatitude ground network and several magnetospheric spacecraft, as well as the adaptive AM03 model, to specify SCW2L parameters, which allowed us to predict the magnitude of poleward auroral expansion. Auroral observations made during the two substorm activations demonstrate that the SCW2L combined with the AM03 model nicely describes the azimuthal progression and the observed magnitude of the auroral expansion. This finding indicates that the SCW-related distortions are responsible for much of the observed global development of bright auroras.
Journal Article
Quiet, Discrete Auroral Arcs—Observations
by
Partamies, N.
,
Lynch, K.
,
Sivadas, N.
in
Acceleration
,
Aerospace Technology and Astronautics
,
Altitude
2020
Quiet, discrete auroral arcs are an important and fundamental consequence of solar wind-magnetosphere interaction. We summarize the current standing of observations of such auroral arcs. We review the basic characteristics of the arcs, including occurrence in time and space, lifetimes, width and length, as well as brightness, and the energy of the magnetospheric electrons responsible for the optical emission. We briefly discuss the connection between single and multiple discrete arcs. The acceleration of the magnetospheric electrons by high-altitude electric potential structure is reviewed, together with our current knowledge of these structures. Observations relating to the potential drop, altitude distribution and lifetimes are reviewed, as well as direct evidence for the parallel electric fields of the acceleration structures. The current closure in the ionosphere of the currents carried by the auroral electrons is discussed together with its impact on the ionosphere and thermosphere. The connection of auroral arcs to the magnetosphere and generator regions is briefly touched upon. Finally we discuss how to progress from the current observational status to further our understanding of auroral arcs.
Journal Article
Diffuse and Pulsating Aurora
by
Katoh, Yuto
,
Ogawa, Yasunobu
,
Sakanoi, Takeshi
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Auroral Physics
2020
This chapter reviews fundamental properties and recent advances of diffuse and pulsating aurora. Diffuse and pulsating aurora often occurs on closed field lines and involves energetic electron precipitation by wave-particle interaction. After summarizing the definition, large-scale morphology, types of pulsation, and driving processes, we review observation techniques, occurrence, duration, altitude, evolution, small-scale structures, fast modulation, relation to high-energy precipitation, the role of ECH waves, reflected and secondary electrons, ionosphere dynamics, and simulation of wave-particle interaction. Finally we discuss open questions of diffuse and pulsating aurora.
Journal Article
Physical Processes of Meso-Scale, Dynamic Auroral Forms
by
Nishimura, Y.
,
Forsyth, C.
,
Henderson, M. G.
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Auroral Physics
2020
Meso-scale auroral forms, such as poleward boundary intensifications, streamers, omega bands, beads and giant undulations, are manifestations of dynamic processes in the magnetosphere driven, to a large part, by plasma instabilities in the magnetotail. New observations from ground- and space-based instrumentation and theoretical treatments are giving us a clearer view of some of the physical processes behind these auroral forms. However, questions remain as to how some of these observations should be interpreted, given uncertainties in mapping auroral features to locations in the magnetotatil and due to the significant overlap in the results from a variety of models of different plasma instabilities. We provide an overview of recent results in the field and seek to clarify some of the remaining questions with regards to what drives some of the largest and most dynamic auroral forms.
Journal Article
Aurora in the Polar Cap: A Review
by
Zou, Ying
,
Kullen, Anita
,
Frey, Harald U.
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Auroral oval
2020
This paper reviews our current understanding of auroral features that appear poleward of the main auroral oval within the polar cap, especially those that are known as Sun-aligned arcs, transpolar arcs, or theta auroras. They tend to appear predominantly during periods of quiet geomagnetic activity or northwards directed interplanetary magnetic field (IMF). We also introduce polar rain aurora which has been considered as a phenomenon on open field lines. We describe the morphology of such auroras, their development and dynamics in response to solar wind-magnetosphere coupling processes, and the models that have been developed to explain them.
Journal Article
Small-Scale Dynamic Aurora
by
Lysak, Robert L.
,
Song, Yan
,
Rankin, Robert
in
Aerospace Technology and Astronautics
,
Alfven waves
,
Astrophysics and Astroparticles
2021
Small-scale dynamic auroras have spatial scales of a few km or less, and temporal scales of a few seconds or less, which visualize the complex interplay among charged particles, Alfvén waves, and plasma instabilities working in the magnetosphere-ionosphere coupled regions. We summarize the observed properties of flickering auroras, vortex motions, and filamentary structures. We also summarize the development of fundamental theories, such as dispersive Alfvén waves (DAWs), plasma instabilities in the auroral acceleration region, ionospheric feedback instabilities (IFI), and the ionospheric Alfvén resonator (IAR).
Journal Article
Proton Aurora and Optical Emissions in the Subauroral Region
by
Gallardo-Lacourt, B.
,
Frey, H. U.
,
Martinis, C.
in
Aerospace Technology and Astronautics
,
Altitude
,
Astrophysics and Astroparticles
2021
Optical structures located equatorward of the main auroral oval often exhibit different morphologies and dynamics than structures at higher latitudes. In some cases, questions arise regarding the formation mechanisms of these photon-emitting phenomena. New developments in space and ground-based instruments have enabled us to acquire a clearer view of the processes playing a role in the formation of subauroral structures. In addition, the discovery of new optical structures helps us improve our understanding of the latitudinal and altitudinal coupling that takes place in the subauroral region. However, several questions remain unanswered, requiring the development of new instruments and analysis techniques. We discuss optical phenomena in the subauroral region, summarize observational results, present conclusions about their origin, and pose a number of open questions that warrant further investigation of proton aurora, detached subauroral arcs and spots, stable auroral red (SAR) arcs, and STEVE (Strong Thermal Emission Velocity Enhancement).
Journal Article
On the Relationship Between Shear Alfvén Waves, Auroral Electron Acceleration, and Field Line Resonances
by
Degeling, A. W.
,
Rankin, R.
,
Gillies, D. M.
in
Aerospace Technology and Astronautics
,
Alfven waves
,
Alternating current
2021
This article describes the relationship between shear Alfvén waves and auroral electron acceleration, with an emphasis on long-period standing waves that correlate with redline auroral arcs in the Earth’s magnetosphere. Discrete auroral arcs were correlated with high-latitude field line resonances in the early 1990’s. The past decade has seen advances in all-sky camera technology improve the detection and categorization of “FLR arcs” and establish them as a distinct population. We review observations of redline arcs and discuss estimates of wave amplitudes, wavelengths perpendicular to the geomagnetic field, and saturation times obtained within the framework of two-fluid theories. The two-fluid theory explains the spatial and temporal evolution of FLR optical signatures, but the estimated parallel electric field strengths are insufficient to accelerate electrons and produce 6300 Å auroral emissions. A kinetic theory of FLRs is necessary since electron bounce motion in long-wavelength standing waves affects the ac conductivity and hence the strength of parallel electric fields. In the kinetic theory, the current-voltage relation comprises a conductivity kernel that is a function of the wave frequency, field line length, electron thermal speed, and the number of electron trajectories nearly parallel to geomagnetic field lines close to the ionosphere. The ensuing nonlocal relationship between wave parallel currents and parallel electric fields provides a feasible explanation of the correlation between long-period field line resonances and redline arcs in the terrestrial magnetosphere. The mirror force and particle trapping in the wave fields of shear Alfvén waves are demonstrated to be important aspects of the kinetics of FLRs.
Journal Article
Quiescent Discrete Auroral Arcs: A Review of Magnetospheric Generator Mechanisms
by
Lysak, Robert L.
,
Birn, Joachim
,
Knudsen, David J.
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Auroral arcs
2020
One of the longstanding questions of space science is: How does the Earth’s magnetosphere generate auroral arcs? A related question is: What form of energy is extracted from the magnetosphere to drive auroral arcs? Not knowing the answers to these questions hinders our ability to determine the impact of auroral arcs on the magnetospheric system. Magnetospheric mechanisms for driving quiescent auroral arcs are reviewed. Two types of quiescent arcs are (1) low-latitude non-Alfvénic (growth-phase) arcs magnetically connecting to the electron plasma sheet and (2) high-latitude arcs magnetically connecting near the plasma-sheet boundary layer. The reviews of the magnetospheric generator mechanisms are separated for the two types of quiescent arcs. The driving of auroral-arc currents in large-scale computer simulations is examined. Predicted observables in the magnetosphere and in the ionosphere are compiled for the various generator mechanisms.
Journal Article
Dayside Aurora
by
Zou, Ying
,
Strangeway, Robert J.
,
Frey, Harald U.
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Auroral Physics
2019
Dayside aurora is related to processes in the dayside magnetosphere and especially at the dayside magnetopause. A number of dayside aurora phenomena are driven by reconnection between the solar wind interplanetary magnetic field and the Earth’s internal magnetic field at the magnetopause. We summarize the properties and origin of aurora at the cusp foot point, High Latitude Dayside Aurora (HiLDA), Poleward Moving Auroral Forms (PMAFs), aurora related to traveling convection vortices (TCV), and throat aurora. Furthermore we discuss dayside diffuse aurora, morning side diffuse aurora spots, and shock aurora.
Journal Article