Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,612 result(s) for "Autistic Disorder - etiology"
Sort by:
Vitamin D and autism, what’s new?
An increasing amount of evidence points to the possibility that gestational and early childhood vitamin D deficiency [25(OH)D < 40 ng/ml] cause some cases of autism. Vitamin D is metabolized into a seco-steroid hormone that regulates about 3% of the 26,000 genes in the coding human genome. It is also a neurosteroid that is active in brain development, having effects on cellular proliferation, differentiation, calcium signaling, neurotrophic and neuroprotective actions; it also appears to have an effect on neurotransmission and synaptic plasticity. Children who are, or who are destined to become, autistic have lower 25(OH)D levels at 3 months of gestation, at birth and at age 8 compared to their unaffected siblings. Two open label trials found high dose vitamin D improves the core symptoms of autism in about 75% of autistic children. A few of the improvements were remarkable. The vitamin D doses used in these children were 300 IU/KG/day up to a maximum of 5000 IU/day (highest final 25(OH)D level reached was 45 ng/ml). The other study used 150,000 IU/month IM as well as 400 IU/day [highest final 25(OH)D level was 52 ng/ml]. These two open label trials were recently confirmed with a randomized controlled trial (RCT) using 300 IU/kg/day with a maximum of 5000 IU/day and resulted in effects similar to the two open label studies. In terms of prevention, a recent small study showed vitamin D supplementation during pregnancy (5000 IU/day) and during infancy and early childhood (1000 IU/day) significantly reduced the expected incidence of autism in mothers who already had one autistic child from 20% to 5%. Vitamin D is safe; for example, over the last 15 years, Poison Control reports there have been approximately 15,000 cases of vitamin D overdose. However only three of these 15,000 people developed clinical toxicity and no one died. Given those facts, practitioners might consider treating autism with 300 IU/kg/day, and seek to prevent autism by supplementing pregnant and lactating women (5000 IU/day) and infants and young children (150 IU/kg/day) checking 25(OH)D levels every 3 months. These doses will increase 25(OH)D blood levels to those recommended by the Endocrine Society. As the American Academy of Pediatrics recommends vitamin D supplementation during infancy and childhood, pediatricians and family practitioners should evaluate the current evidence on autism and vitamin D and act accordingly.
Development and brain systems in autism
This volume covers several perspectives on autism which bring together the most recent scientific views of the nature of this disorder. A number of themes organize major developments and emerging areas in autism: cognitive and neural systems development-how autism arises in the behavior and thought of very young children; discovering brain mechanisms underlying social and cognitive deficits in autism-how we can explain \"social awkwardness\" and poor language comprehension in terms of malfunctions of brain mechanisms, revealed by MRI studies of people with autism; integrating information about genes, brain, and biological mechanisms with behavioral evidence; and linking the science of autism with lives lived-how the new information about autism impacts people with autism and real-world considerations-- Source other than Library of Congress.
The effect of falsely balanced reporting of the autism-vaccine controversy on vaccine safety perceptions and behavioral intentions
Controversy surrounding an autism–vaccine link has elicited considerable news media attention. Despite being widely discredited, research suggests that journalists report this controversy by presenting claims both for and against a link in a relatively 'balanced' fashion. To investigate how this reporting style influences judgments of vaccine risk, we randomly assigned 320 undergraduate participants to read a news article presenting either claims both for/against an autism-vaccine link, link claims only, no-link claims only or non-health-related information. Participants who read the balanced article were less certain that vaccines are safe, more likely to believe experts were less certain that vaccines are safe and less likely to have their future children vaccinated. Results suggest that balancing conflicting views of the autism-vaccine controversy may lead readers to erroneously infer the state of expert knowledge regarding vaccine safety and negatively impact vaccine intentions.
A self-affirmation exercise does not improve intentions to vaccinate among parents with negative vaccine attitudes (and may decrease intentions to vaccinate)
Two studies investigated the effectiveness of a self-affirmation exercise on vaccine safety beliefs and intent to vaccinate future children. In Study 1, a sample of 585 parents with at least one child under the age of 18 in the home participated through Amazon's MTurk. Participants were randomly assigned to one of four conditions in a 2 x 2 design. Participants read either correcting information refuting a link between the measles, mumps, and rubella (MMR) vaccine and autism or a control passage about bird feeding. Additionally, participants either completed a self-affirmation exercise where they reflected on their personal values or in a control condition in which they reflected on least-personally-important values that might be important to others. Participants exposed to the correcting information were less likely to believe that vaccines cause serious side effects, but no less likely to believe that the MMR vaccine causes autism. For parents with initially positive vaccine attitudes, there was no effect of condition on intent to vaccinate a future child. For parents with initially negative vaccine attitudes, self-affirmation was ineffective in the presence of correcting information and resulted in less intention to vaccinate in the absence of correcting information. This effect was partially replicated in Study 2 (N = 576), which provided no correcting information but otherwise followed the same procedure as Study 1.
Risk of Autism after Prenatal Topiramate, Valproate, or Lamotrigine Exposure
In a population-based study, prenatal exposure to topiramate, valproate, or lamotrigine was linked with an increased risk of autism. After adjustment for confounders, only valproate exposure was linked with increased risk.
Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders
The immune and nervous systems have unique developmental trajectories that individually build intricate networks of cells with highly specialized functions. These two systems have extensive mechanistic overlap and frequently coordinate to accomplish the proper growth and maturation of an organism. Brain resident innate immune cells — microglia — have the capacity to sculpt neural circuitry and coordinate copious and diverse neurodevelopmental processes. Moreover, many immune cells and immune-related signalling molecules are found in the developing nervous system and contribute to healthy neurodevelopment. In particular, many components of the innate immune system, including Toll-like receptors, cytokines, inflammasomes and phagocytic signals, are critical contributors to healthy brain development. Accordingly, dysfunction in innate immune signalling pathways has been functionally linked to many neurodevelopmental disorders, including autism and schizophrenia. This review discusses the essential roles of microglia and innate immune signalling in the assembly and maintenance of a properly functioning nervous system.In this Review, Zengeler and Lukens consider how innate immune signalling pathways contribute to healthy brain development and the implications for neurodevelopmental disorders.
Is social camouflaging associated with anxiety and depression in autistic adults?
Background There is inconsistent evidence for a clear pattern of association between ‘camouflaging’ (strategies used to mask and/or compensate for autism characteristics during social interactions) and mental health. Methods This study explored the relationship between self-reported camouflaging and generalised anxiety, depression, and social anxiety in a large sample of autistic adults and, for the first time, explored the moderating effect of gender, in an online survey. Results Overall, camouflaging was associated with greater symptoms of generalised anxiety, depression, and social anxiety, although only to a small extent beyond the contribution of autistic traits and age. Camouflaging more strongly predicted generalised and social anxiety than depression. No interaction between camouflaging and gender was found. Limitations These results cannot be generalised to autistic people with intellectual disability, or autistic children and young people. The sample did not include sufficient numbers of non-binary people to run separate analyses; therefore, it is possible that camouflaging impacts mental health differently in this population. Conclusions The findings suggest that camouflaging is a risk factor for mental health problems in autistic adults without intellectual disability, regardless of gender. We also identified levels of camouflaging at which risk of mental health problems is highest, suggesting clinicians should be particularly aware of mental health problems in those who score at or above these levels.
Autism spectrum disorders and autistic traits share genetics and biology
Autism spectrum disorders (ASDs) and autistic traits in the general population may share genetic susceptibility factors. In this study, we investigated such potential overlap based on common genetic variants. We developed and validated a self-report questionnaire of autistic traits in adults. We then conducted genome-wide association studies (GWASs) of six trait scores derived from the questionnaire through exploratory factor analysis in 1981 adults from the general population. Using the results from the Psychiatric Genomics Consortium GWAS of ASDs, we observed genetic sharing between ASDs and the autistic traits 'childhood behavior', 'rigidity' and 'attention to detail'. Gene-set analysis subsequently identified 'rigidity' to be significantly associated with a network of ASD gene-encoded proteins that regulates neurite outgrowth. Gene-wide association with the well-established ASD gene MET reached significance. Taken together, our findings provide evidence for an overlapping genetic and biological etiology underlying ASDs and autistic population traits, which suggests that genetic studies in the general population may yield novel ASD genes.
Aluminium in human brain tissue from donors without neurodegenerative disease: A comparison with Alzheimer’s disease, multiple sclerosis and autism
A burgeoning number of studies are demonstrating aluminium in human brain tissue. While research has both quantified and imaged aluminium in human brain tissue in neurodegenerative and neurodevelopmental disease there are few similar data for brain tissue from non-neurologically impaired donors. We have used microwave assisted acid digestion and transversely heated graphite furnace atomic absorption spectrometry to measure aluminium in twenty brains from donors without recognisable neurodegenerative disease. The aluminium content of 191 tissue samples was invariably low with over 80% of tissues having an aluminium content below 1.0 μg/g dry weight of tissue. The data for these control tissues were compared with data (measured using identical procedures) for sporadic Alzheimer’s disease, familial Alzheimer’s disease, autism spectrum disorder and multiple sclerosis. Detailed statistical analyses showed that aluminium was significantly increased in each of these disease groups compared to control tissues. We have confirmed previous conclusions that the aluminium content of brain tissue in Alzheimer’s disease, autism spectrum disorder and multiple sclerosis is significantly elevated. Further research is required to understand the role played by high levels of aluminium in the aetiology of human neurodegenerative and neurodevelopmental disease.