Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,636
result(s) for
"Automobiles Chassis."
Sort by:
Design and Analysis of Composite Structures for Automotive Applications - Chassis and Drivetrain
2019
This book provides a theoretical background for the development of elements of car suspensions. It begins with a description of the elastic-kinematics of the vehicle and closed form solutions for the vertical and lateral dynamics. It evaluates the vertical, lateral, and roll stiffness of the vehicle, and explains the necessity of the modelling of the vehicle stiffness. The composite materials for the suspension and powertrain design are discussed and their mechanical properties are provided. The book also looks at the basic principles for the design optimization using composite materials and mass reduction principles. Additionally, references and conclusions are presented in each chapter. This book offers complete coverage of chassis components made of composite materials and covers elastokinematics and component compliances of vehicles. It looks at parts made of composite materials such as stabilizer bars, wheels, half-axes, springs, and semi-trail axles. The book also provides information on leaf spring assembly for motor vehicles and motor vehicle springs comprising composite materials.
Shoulder girdle muscle activity and fatigue during automobile chassis repair
2019
The objective of this study was to assess the postures that were commonly used in automobile chassis repair operations, and to evaluate shoulder girdle muscle fatigue for different combinations of the weight of hand-tools.
Two right muscles, including upper trapezius (UT) and middle deltoid (MD), were selected. Surface electromyography (SEMG) and a perceived level of discomfort (PLD) were used to assess the degree of shoulder girdle fatigue. Fifteen healthy young male subjects from the Northwestern Polytechnical University participated in the test. The test consisted of assuming 4 different postures and maintaining each of them for 60 s. The 4 postures varied in terms of dumbbell weights, standing for the hand-tools weight: W1 was 0.48 kg and W2 was 0.75 kg; the 4 shoulder postures were shoulder flexions of 150°, 120°, 90°, and 60°, combined with an included elbow angle of 180°, 150°, 120° and 90°, respectively. The experimental sequences were randomly selected. The signals of SEMG and the values of PLD in the shoulder girdle were recorded in 60 s. All subjects completed the whole test. The repeated measure analysis of variance (ANOVA) was performed to ascertain differences between dumbbell weight (0.48 kg and 0.75 kg) and shoulder postures (150°/180°, 120°/150°, 90°/120° and 60°/90°). The Friedman test was utilized to determine the significant differences for UT(PLD) and MD(PLD) on shoulder postures. Spearman’s correlation was used to analyze the relationship between the subjective and objective measurements.
Significant correlational relationships existed between the UT percentage of the maximal voluntary electrical activation (%MVE) and UT(PLD) (r = 0.459, p < 0.01), between MD(%MVE) and MD(PLD) (r = 0.821, p < 0.01). The results showed that SEMG and PLD of the 4 postures under analysis differed significantly (p < 0.05).
It was indicated that posture T4 (shoulder forward flexion 60° and included elbow angle 90°) resulted in the lowest fatigue, both in terms of the objective measure and the subjective perception, which meant that this posture was more ergonomic. Int J Occup Med Environ Health. 2019;32(4):537–52
Journal Article
TSA infrared measurements for stress distribution on car elements
2017
Because of the continuous evolution of the market in terms of quality and performance, the car production industry is being subjected to more and more pressing technological challenges. In this framework the use of an advanced measurement technique such as thermoelasticity allows the engineers to have a fast and reliable tool for experimental investigation, optimization and validation of the finite element method (FEM) of those critical parts, such as parts of car-frame tables (Marsili and Garinei, 2013; Ju et al., 1997). In this work it is shown how the thermoelastic measurement technique can be used to optimize a Ferrari car frame, as a method of experimental investigation and as a technique of validation of numerical models.The measurement technique developed for this purpose is described together with the calibration method used in the test benches normally used for fatigue testing and qualification of this car's components. The results obtained show a very good agreement with FEM models and also the possibility of experimentally identifying the concentration levels of stress in critical parts with a very high spatial resolution and testing the effective geometry and material structure.
Journal Article
Clippings: how to graft a modern subframe onto an outdated frame
1994
Attaching a new subframe onto a vintage chassis is not as difficult as it may seem. Tips on installing modern front clips onto outdated frames are presented and discussed.
Magazine Article
Budget beater: how to make a street rod chassis look bitchin' on the cheap
1995
Designing a hot rod from the ground up means much attention must be given to building and tuning its chassis. Tips on building and modifying such a chassis are discussed.
Magazine Article
Beefing the Super 'Stang chassis. (1989 Ford Mustang)
1994
A 1989 Ford Mustang LX was subjected to several stages of engine, chassis and body modifications to produce a high performance muscle car. Modifications to the chassis to strengthen it and improve handling are presented and discussed.
Magazine Article