Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
277 result(s) for "Autophagic cell death"
Sort by:
Targeting autophagy is a promising therapeutic strategy to overcome chemoresistance and reduce metastasis in osteosarcoma (Review)
Osteosarcoma (OS) is the most common primary bone malignancy, mainly affecting children and adolescents. Currently, surgical resection combined with adjuvant chemotherapy has been standardized for OS treatment. Despite great advances in chemotherapy for OS, its clinical prognosis remains far from satisfactory; this is due to chemoresistance, which has become a major obstacle to improving OS treatment. Autophagy, a catabolic process through which cells eliminate and recycle their own damaged proteins and organelles to provide energy, can be activated by chemotherapeutic drugs. Accumulating evidence has indicated that autophagy plays the dual role in the regulation of OS chemoresistance by either promoting drug resistance or increasing drug sensitivity. The aim of the present review was to demonstrate thatautophagy has both a cytoprotective and an autophagic cell death function in OS chemoresistance. In addition, methods to detect autophagy, autophagy inducers and inhibitors, as well as autophagy-mediated metastasis, immunotherapy and clinical prognosis are also discussed.
Intracellular Mechanical Stress‐Mediated Autophagy Cell Death via Nanospikes for Cancer Treatment
Mechanical signals are fundamental regulators of cell fate, yet how cells respond to mechanical stress at the subcellular level remains unclear. Inspired by natural spiky structures that concentrate mechanical stress at the nanoscale, a series of tunable gold nanospikes are designed to promote internalization and modulate mechanical stress intracellularly. The nanospikes with a length of 254.2 nm induced the highest cancer cell death compared to those with 104.0 and 45.4 nm. Mechanistically, nanospikes are internalized into lysosomes and triggered extensive lysosomal membrane disruption. Finite element simulations reveal that the tip stress generated by nanospikes with a length of 254.2 nm achieves the highest value within 5.233 to 9.902 kPa range across the majority of lysosome sizes, exceeding the mechanical threshold for lysosomal rupture. This mechanical stress on lysosomal membranes triggered autophagic cell death through the Galectin‐3 (Gal3)‐Trim16 signaling axis, establishing a direct mechanobiological link between nanostructure geometry and cell fate. Importantly, the nanospikes achieve 77.8% tumor inhibition, while the in situ melting via nanosecond pulsed laser enables reduced mechanical stress and attenuated cytotoxicity. This bioinspired morphological strategy provides a controllable method for tuning intracellular mechanics, providing new insights for the rational design of mechanical drugs for cancer treatment. Nanospikes with tunable morphology at the nanoscale induce lysosomal membrane damage by generating localized mechanical stress, activating Galectin‐3 (Gal3)‐Trim16‐mediated autophagic cell death. Finite element analysis and laser‐triggered spike ablation enable precise control of intracellular force signaling and cytotoxicity, offering a mechanoresponsive strategy for cancer treatment.
Beclin1-armed oncolytic Vaccinia virus enhances the therapeutic efficacy of R-CHOP against lymphoma in vitro and in vivo
Non-Hodgkin lymphoma (NHL) is a form of lymphoid malignancy, with diffuse large B cell lymphoma (DLBCL) being the most common NHL isoform. Approximately half of patients with DLBCL are successfully cured via first-line Rituximab, Cyclophosphamide, Epirubicin, Vindesine, Prednisolone (R-CHOP) treatment. However, 30-40% of patients with DLBCL ultimately suffer from treatment-refractory or relapsed disease. These patients often suffer from high mortality rates owing to a lack of suitable therapeutic options, and all patients are at a high risk of serious treatment-associated dose-dependent toxicity. As such, it is essential to develop novel treatments for NHL that are less toxic and more efficacious. Oncolytic Vaccinia virus (OVV) has shown promise as a means of treating numerous types of cancer. Gene therapy strategies further enhance OVV-based therapy by improving tumor cell recognition and immune evasion. Beclin1 is an autophagy-associated gene that, when upregulated, induces excess autophagy and cell death. The present study aimed to develop an OVV-Beclin1 therapy capable of inducing autophagic tumor cell death. OVV-Beclin1 was able to efficiently kill NHL cells and to increase the sensitivity of these cells to R-CHOP, thereby decreasing the dose-dependent toxic side effects associated with this chemotherapeutic regimen. The combination of OVV-Beclin1 and R-CHOP also significantly improved tumor growth inhibition and survival in a BALB/c murine model system owing to the synergistic induction of autophagic cell death. Together, these findings suggest that OVV-Beclin1 infection can induce significant autophagic cell death in NHL, highlighting this as a novel means of inducing tumor cell death via a mechanism that is distinct from apoptosis and necrosis.
The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death
The recent discovery of autosis as a variant of autophagy-dependent cell death has challenged the conventional understanding of cell death and programmed cell death in cellular decision making. In contrast to previous accounts of distinct cell death modalities, autosis occurs with high autophagic activity, in the absence of apoptotic and necrotic markers and yet is not fully regulated by typical autophagy markers. Given the metabolic importance of autophagic responses and the extensive cross-talk with both apoptosis and necrosis signalling, the classical and morphotype-driven characterization of cell death as pre-determined subroutines is being increasingly called into question. Furthermore, the conflicting evidence with regards to cell death induction through autophagy modulation in various cancer models highlights the lack of consensus over the extent to which autophagy assists in cell death ontrol and whether it is capable of being a bona fide lethal process. This review evaluates the evidence and context of autophagy-dependent cell death and delineates the role of an autophagic flux threshold associated with ‘lethal’ and ‘non-lethal’ autophagy and its role in autosis control. In doing so, cancer treatment avenues will be explored with regards to precision modulation of tumour autophagic flux to ascertain whether autosis induction may present a novel therapeutic strategy.
β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma
Hepatocellular carcinoma (HCC), a common liver malignancy worldwide, has high morbidity and mortality. β-Thujaplicin, a tropolone derivative, has been used in some health-care products and clinical adjuvant drugs, but its use for HCC is unknown. In this study, we found that β-Thujaplicin inhibits the growth of HCC cells, but not normal liver cells, with nanomolar potency. Mechanistically, we found that β-Thujaplicin could induce autophagy, as judged by western blot, confocal microscopy, and transmission electron microscopy. Further using β-Thujaplicin combined with an autophagy blocker or agonist treatment HepG2 cells, we found that β-Thujaplicin induced autophagic cell death (ACD) mediated by ROS caused inhibition of the Akt-mTOR signaling pathway. Moreover, β-Thujaplicin triggered HepG2 apoptosis and increased cleaved PARP1, cleaved caspase-3, and Bax/Bcl-2 ratio, which indicated that β-Thujaplicin induced apoptosis mediated by the mitochondrial-dependent pathway. We also found that increased expression of p21 and decreased expression of CDK7, Cyclin D1, and Cyclin A2 participating in β-Thujaplicin caused the S-phase arrest. It seems that β-Thujaplicin exerts these functions by ROS-mediated p38/ERK MAPK but not by JNK signaling pathway activation. Consistent with in vitro findings, our in vivo study verified that β-Thujaplicin treatment significantly reduced HepG2 tumor xenograft growth. Taken together these findings suggest that β-Thujaplicin have an ability of anti-HCC cells and may conducively promote the development of novel anti-cancer agents.
Hernandezine induces autophagic cell death in human pancreatic cancer cells via activation of the ROS/AMPK signaling pathway
Hernandezine (Her) is a bisbenzylisoquinoline alkaloid extracted from the traditional Chinese herbal medicine Thalictrum glandulosissimum . Evidence shows that Her is a natural agonist of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and induces apoptosis and autophagy in tumor cells. In this study, we investigated the role of autophagy in Her-induced cell death in human pancreatic cancer cell lines. We showed that Her dose-dependently suppressed cell proliferation, promoted autophagy and induced autophagic death in pancreatic ductal adenocarcinoma (PDAC) cell lines Capan-1 and SW1990. The IC 50 values of Her in inhibition of Capan-1 and SW1990 cells were 47.7 μM and 40.1 μM, respectively. Immunoblotting showed that Her (1−40 μM) promoted the conversion of LC3-I to LC3-II, and Her exerted concentration-dependent and time-dependent effects on autophagy activation in PDAC cells. In transmission electron microscopy and fluorescence image analysis, we found that autophagic vacuoles were significantly increased in Her-treated cells. Knockdown of ATG5, a key gene in the autophagy pathway, alleviated the activation of autophagy by Her. These results demonstrated that Her induced autophagy in PDAC cells. Intensely activated autophagy could promote cell death. The autophagy inhibitors, BafA1 and HCQ significantly inhibited Her-induced cell death, implying that Her induced autophagic cell death in PDAC cells. Moreover, we showed that Her activated autophagy by increasing the phosphorylation of AMPK and decreasing the phosphorylation of mTOR/p70S6K. Knockdown of AMPKα relieves the autophagic cell death induced by Her. Furthermore, Her concentration-dependently enhanced reactive oxygen species (ROS) generation in PDAC cells. Antioxidants could reduce the phosphorylation of AMPK and suppress autophagic cell death induced by Her. Our study provides evidence for the development of Her as a therapeutic agent for the treatment of pancreatic cancer.
Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer
SummaryAlthough cisplatin is one of the most common antineoplastic drug, its successful utilisation in cancer treatment is limited by the drug resistance. Multiple attempts have been made to find potential cisplatin chemosensitisers which would overcome cancer cells resistance thus improving antineoplastic efficacy. Autophagy modulation has become an important area of interest regarding the aforementioned topic. Autophagy is a highly conservative cellular self-digestive process implicated in response to multiple environmental stressors. The high basal level of autophagy is a common phenomenon in cisplatin-resistant cancer cells which is thought to grant survival benefit. However current evidence supports the role of autophagy in either promoting or limiting carcinogenesis depending on the context. This encourages the search of substances modulating the process to alleviate cisplatin resistance. Such a strategy encompasses not only simple autophagy inhibition but also harnessing the process to induce autophagy-dependent cell death. In this paper, we briefly describe the mechanism of cisplatin resistance with a special emphasis on autophagy and we give an extensive literature review of potential substances with cisplatin chemosensitising properties related to autophagy modulation.
Fibroblast growth factor 21 facilitates peripheral nerve regeneration through suppressing oxidative damage and autophagic cell death
Seeking for effective drugs which are beneficial to facilitating axonal regrowth and elongation after peripheral nerve injury (PNI) has gained extensive attention. Fibroblast growth factor 21 (FGF21) is a metabolic factor that regulates blood glucose and lipid homeostasis. However, there is little concern for the potential protective effect of FGF21 on nerve regeneration after PNI and revealing related molecular mechanisms. Here, we firstly found that exogenous FGF21 administration remarkably promoted functional and morphologic recovery in a rat model of sciatic crush injury, manifesting as persistently improved motor and sensory function, enhanced axonal remyelination and regrowth and accelerated Schwann cells (SCs) proliferation. Furthermore, local FGF21 application attenuated the excessive activation of oxidative stress, which was accompanied with the activation of nuclear factor erythroid‐2‐related factor 2 (Nrf‐2) transcription and extracellular regulated protein kinases (ERK) phosphorylation. We detected FGF21 also suppressed autophagic cell death in SCs. Additionally, treatment with the ERK inhibitor U0126 or autophagy inhibitor 3‐MA partially abolishes anti‐oxidant effect and reduces SCs death. Taken together, these results indicated that the role of FGF21 in remyelination and nerve regeneration after PNI was probably related to inhibit the excessive activation of ERK/Nrf‐2 signalling‐regulated oxidative stress and autophagy‐induced cell death. Overall, our work suggests that FGF21 administration may provide a new therapy for PNI.
Transcriptomic Profiling Reveals AKR1C1 and AKR1C3 Mediate Cisplatin Resistance in Signet Ring Cell Gastric Carcinoma via Autophagic Cell Death
Signet ring cell gastric carcinoma (SRCGC) is a lethal malignancy that has developed drug resistance to cisplatin therapies. The aim of this study was to characterize the acquisition of the cisplatin-resistance SRCGC cell line (KATO/DDP cells) and to understand the molecular mechanisms underlying cisplatin resistance. Transcriptomic and bioinformatic analyses were used to identify the candidate gene. This was confirmed by qPCR and Western blot. Aldoketoreductase1C1 and 1C3 (AKR1C1 and AKR1C3) were the most promising molecules in KATO/DDP cells. A specific inhibitor of AKR1C1 (5PBSA) and AKR1C3 (ASP9521) was used to enhance cisplatin-induced KATO/DPP cell death. Although cisplatin alone induced KATO/DDP apoptosis, a combination treatment of cisplatin and the AKR1C inhibitors had no influence on percent cell apoptosis. In conjunction with the autophagy inhibitor, 3MA, attenuated the effects of 5PBSA or ASP9521 to enhance cisplatin-induced cell death. These results indicated that AKR1C1 and 1C3 regulated cisplatin-induced KATO/DDP cell death via autophagy. Moreover, cisplatin in combination with AKR1C inhibitors and N-acetyl cysteine increased KATO/DDP cells’ viability when compared with a combination treatment of cisplatin and the inhibitors. Taken together, our results suggested that AKR1C1 and 1C3 play a crucial role in cisplatin resistance of SRCGC by regulating redox-dependent autophagy.
Exopolysaccharide from Cryptococcus heimaeyensis S20 induces autophagic cell death in non‐small cell lung cancer cells via ROS/p38 and ROS/ERK signalling
Objectives Cryptococcus heimaeyensis S20 is found in Antarctica and can produce exopolysaccharides (CHEPS). Here, we explore the anti‐tumour effects of CHEPS on non‐small cell lung cancer (NSCLC). Materials and methods Cell viability was assessed by CCK8 and colony formation assays. Flow cytometry was used to analyse the cell cycle, cell apoptosis and reactive oxygen species (ROS). Cell autophagy was detected by EGFP‐LC3 puncta assay, Lyso‐Tracker Red staining and transmission electron microscopy. mRNA and protein levels were analysed by qRT‐PCR and Western blot. Related mechanisms were confirmed using appropriate inhibitors or shRNA. In vitro results were further confirmed by a tumour xenograft study. Results CHEPS inhibited the proliferation of NSCLC cells by inducing S‐ and G2/M‐phase arrest and autophagic cell death, but not apoptosis. CHEPS was less toxic to normal human embryonic lung fibroblasts. CHEPS activated the MAPK pathway in NSCLC cells, and p38 and ERK promoted CHEPS‐induced cell death. Further studies showed that p38 and ERK promoted CHEPS‐induced NSCLC cell autophagy and ERK promoted CHEPS‐induced S‐ and G2/M‐phase arrest. ROS were induced by CHEPS. A ROS scavenger attenuated CHEPS‐induced p38 and ERK activation, autophagy and cell death. Finally, CHEPS reduced orthotopic lung tumour growth without organ‐related toxicity. CHEPS also induced ROS, activated p38 and ERK, and triggered autophagy in vivo. Conclusions CHEPS induces autophagic cell death and S‐ and G2/M‐phase arrest in NSCLC cells via ROS/p38 and ROS/ERK signalling. Cryptococcus heimaeyensis S20 is found in Antarctica and can produce exopolysaccharides (CHEPS). Hao et al demonstrate that CHEPS induces reactive oxygen species (ROS) generation, which activates p38 and ERK, leading to cell autophagy and death in non‐small cell lung cancer (NSCLC) cells. CHEPS‐activated ERK also induces S‐ and G2/M‐phase arrest.