Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
13,983 result(s) for "Auxins"
Sort by:
Auxin biosynthesis and storage forms
The plant hormone auxin drives plant growth and morphogenesis. The levels and distribution of the active auxin indole-3-acetic acid (IAA) are tightly controlled through synthesis, inactivation, and transport. Many auxin precursors and modified auxin forms, used to regulate auxin homeostasis, have been identified; however, very little is known about the integration of multiple auxin biosynthesis and inactivation pathways. This review discusses the many ways auxin levels are regulated through biosynthesis, storage forms, and inactivation, and the potential roles modified auxins play in regulating the bioactive pool of auxin to affect plant growth and development.
Auxin Response Factors: output control in auxin biology
Auxin triggers gene expression changes through a family of ARF transcription factors. This review summarizes recent progress in understanding the mechanisms and diversity of ARF action. Abstract The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if not all, of these processes are mediated by changes in gene expression. Auxin acts on gene expression through a short nuclear pathway that converges upon the activation of a family of DNA-binding transcription factors. These AUXIN RESPONSE FACTORS (ARFs) are thus the effector of auxin response and translate the chemical signal into the regulation of a defined set of genes. Given the limited number of dedicated components in auxin signaling, distinct properties among the ARF family probably contribute to the establishment of multiple unique auxin responses in plant development. In the two decades following the identification of the first ARF in Arabidopsis, much has been learnt about how these transcription factors act, and how they generate unique auxin responses. Progress in genetics, biochemistry, genomics, and structural biology has helped to develop mechanistic models for ARF action. However, despite intensive efforts, many central questions are yet to be addressed. In this review, we highlight what has been learnt about ARF transcription factors, and identify outstanding questions and challenges for the near future.
Melatonin Regulates Root Meristem by Repressing Auxin Synthesis and Polar Auxin Transport in Arabidopsis
Melatonin ( -acetyl-5-methoxytryptamine) plays important roles in regulating both biotic and abiotic stress tolerance, biological rhythms, plant growth and development. Sharing the same substrate (tryptophan) for the biosynthesis, melatonin and auxin also have similar effects in plant development. However, the specific function of melatonin in modulating plant root growth and the relationship between melatonin and auxin as well as underlying mechanisms are still unclear. In this study, we found high concentration of melatonin remarkably inhibited root growth in by reducing root meristem size. Further studies showed that melatonin negatively regulated auxin biosynthesis, the expression of PINFORMED (PIN) proteins as well as auxin response in . Moreover, the root growth of the triple mutant was more tolerant than that of wild-type in response to melatonin treatment, suggesting the essential role of PIN1/3/7 in melatonin-mediated root growth. Combination treatment of melatonin and 5-Triiodobenzoic acid (TIBA) did not enhance melatonin-mediated reduction of root meristem size, indicating that polar auxin transport (PAT) may be necessary for the regulation of root meristem size by melatonin treatment. Taken together, this study indicates that melatonin regulates root growth in , through auxin synthesis and polar auxin transport, at least partially.
Study on the Interactions of Cyclins with CDKs Involved in Auxin Signal during Leaf Development by WGCNA in IPopulus alba/I
Cell division plays an indispensable role in leaf morphogenesis, which is regulated via the complexes formed by cyclin and cyclin-dependent kinase (CDK). In this study, gene family analysis, exogenous auxin stimulation, RNA-seq and WGCNA analysis were all used to investigate the molecular mechanisms by which cell-cycle-related factors participated in the auxin signaling pathway on leaf morphogenesis. Sixty-three cyclin members and seventeen CDK members in Populus alba were identified and systematically analyzed. During the evolution, WGD was the main reason that resulted in the expansion of cyclin and CDK genes. Firstly, after a short time treating with auxin to matured leaves of seedlings, genes related to cell division including GRF and ARGOS were both upregulated to restart the transition of cells from G1-to-S phase. Secondly, with three days of continuous auxin stimulation to leaves at different developmental stages, leaves area variation, transcriptomes and hormones were analyzed. By PCA, PCoA and WGCNA analyses, the turquoise module was both positively related to leaf development and auxin. Based on the co-expression analysis and Y2H experiment, PoalbCYCD1;4, PoalbCYCD3;3 and PoalbCYCD3;5 were supposed to interact with PoalbCDKA;1, which could be the trigger to promote the G1-to-S phase transition. The ARF transcription factor might play the key role of connecting the auxin signaling pathway and cell division in leaf morphogenesis by affecting CYC–CDK complexes.
Auxin signaling: a big question to be addressed by small molecules
This review summarizes the current knowledge of auxin signaling and emphasizes how chemical genomics could help to unravel the complexity of the TIR1/AFB-Aux/IAA co-receptor system. Abstract Providing a mechanistic understanding of the crucial roles of the phytohormone auxin has been an important and coherent aspect of plant biology research. Since its discovery more than a century ago, prominent advances have been made in the understanding of auxin action, ranging from metabolism and transport to cellular and transcriptional responses. However, there is a long road ahead before a thorough understanding of its complex effects is achieved, because a lot of key information is still missing. The availability of an increasing number of technically advanced scientific tools has boosted the basic discoveries in auxin biology. A plethora of bioactive small molecules, consisting of the synthetic auxin-like herbicides and the more specific auxin-related compounds, developed as a result of the exploration of chemical space by chemical biology, have made the tool box for auxin research more comprehensive. This review mainly focuses on the compounds targeting the auxin co-receptor complex, demonstrates the various ways to use them, and shows clear examples of important basic knowledge obtained by their usage. Application of these precise chemical tools, together with an increasing amount of structural information for the major components in auxin action, will certainly aid in strengthening our insights into the complexity and diversity of auxin response.
Modulating root system architecture: cross-talk between auxin and phytohormones
Root architecture is an important agronomic trait that plays an essential role in water uptake, soil compactions, nutrient recycling, plant–microbe interactions, and hormone-mediated signaling pathways. Recently, significant advancements have been made in understanding how the complex interactions of phytohormones regulate the dynamic organization of root architecture in crops. Moreover, phytohormones, particularly auxin, act as internal regulators of root development in soil, starting from the early organogenesis to the formation of root hair (RH) through diverse signaling mechanisms. However, a considerable gap remains in understanding the hormonal cross-talk during various developmental stages of roots. This review examines the dynamic aspects of phytohormone signaling, cross-talk mechanisms, and the activation of transcription factors (TFs) throughout various developmental stages of the root life cycle. Understanding these developmental processes, together with hormonal signaling and molecular engineering in crops, can improve our knowledge of root development under various environmental conditions.
Naphthylphthalamic acid and the mechanism of polar auxin transport
The molecular mechanism of polar auxin transport will only be fully understood when current studies embrace the context of previous physiological experiments. Abstract Our current understanding of how plants move auxin through their tissues is largely built on the use of polar auxin transporter inhibitors. Although the most important proteins that mediate auxin transport and its regulation have probably all been identified and the mapping of their interactions is well underway, mechanistically we are still surprisingly far away from understanding how auxin is transported. Such an understanding will only emerge after new data are placed in the context of the wealth of physiological data on which they are founded. This review will look back over the use of a key inhibitor called naphthylphthalamic acid (NPA) and outline its contribution to our understanding of the molecular mechanisms of polar auxin transport, before proceeding to speculate on how its use is likely still to be informative.
The SAUR gene family
The family of small auxin up-regulated RNA (SAUR) genes is a family of auxin-responsive genes with ~60–140 members in most higher plant species. Despite the early discovery of their auxin responsiveness, their function and mode of action remained unknown for a long time. In recent years, the importance of SAUR genes in the regulation of dynamic and adaptive growth, and the molecular mechanisms by which SAUR proteins act are increasingly well understood. SAURs play a central role in auxin-induced acid growth, but can also act independently of auxin, tissue specifically regulated by various other hormone pathways and transcription factors. In this review, we summarize recent advances in the characterization of the SAUR genes in Arabidopsis and other plant species. We particularly elaborate on their capacity to fine-tune growth in response to internal and external signals, and discuss the breakthroughs in understanding the mode of action of SAURs in relation to their complex regulation.
Non-canonical auxin signalling
Plant biologists might think that the auxin signalling pathway has been resolved. Activation of gene expression as a result of indole-3-acetic acid (IAA)-mediated assembly of Transport Inhibitor Response 1 (TIR1)/Auxin F-Box (AFB) proteins with AUX/IAA transcriptional regulators has become accepted as the canonical auxin signalling pathway. However, the evidence strongly suggests that noncanonical pathways will still prove to be important, and this theme ran through the 2018 Auxins and Cytokinins in Plant Development conference held in Prague (ACPD 2018).
Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha
A plethora of developmental and physiological processes in land plants is influenced by auxin, to a large extent via alterations in gene expression by AUXIN RESPONSE FACTORs (ARFs). The canonical auxin transcriptional response system is a land plant innovation, however, charophycean algae possess orthologues of at least some classes of ARF and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, suggesting that elements of the canonical land plant system existed in an ancestral alga. We reconstructed the phylogenetic relationships between streptophyte ARF and AUX/IAA genes and functionally characterized the solitary class C ARF, MpARF3, in Marchantia polymorpha. Phylogenetic analyses indicate that multiple ARF classes, including class C ARFs, existed in an ancestral alga. Loss- and gain-of-function MpARF3 alleles result in pleiotropic effects in the gametophyte, with MpARF3 inhibiting differentiation and developmental transitions in multiple stages of the life cycle. Although loss-of-function Mparf3 and Mpmir160 alleles respond to exogenous auxin treatments, strong miR-resistant MpARF3 alleles are auxinin-sensitive, suggesting that class C ARFs act in a context-dependent fashion. We conclude that two modules independently evolved to regulate a pre-existing ARF transcriptional network. Whereas the auxin-TIR1-AUX/IAA pathway evolved to repress class A/B ARF activity, miR160 evolved to repress class C ARFs in a dynamic fashion.