Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
7,882
result(s) for
"Avoidance Learning"
Sort by:
Genetically identified amygdala–striatal circuits for valence-specific behaviors
2021
The basolateral amygdala (BLA) plays essential roles in behaviors motivated by stimuli with either positive or negative valence, but how it processes motivationally opposing information and participates in establishing valence-specific behaviors remains unclear. Here, by targeting
Fezf2
-expressing neurons in the BLA, we identify and characterize two functionally distinct classes in behaving mice, the negative-valence neurons and positive-valence neurons, which innately represent aversive and rewarding stimuli, respectively, and through learning acquire predictive responses that are essential for punishment avoidance or reward seeking. Notably, these two classes of neurons receive inputs from separate sets of sensory and limbic areas, and convey punishment and reward information through projections to the nucleus accumbens and olfactory tubercle, respectively, to drive negative and positive reinforcement. Thus, valence-specific BLA neurons are wired with distinctive input–output structures, forming a circuit framework that supports the roles of the BLA in encoding, learning and executing valence-specific motivated behaviors.
Zhang et al. report that the BLA contains ‘hardwired’ positive-valence and negative-valence neurons, which each express
Fezf2
but have distinct connectivity. These neurons separately drive learning and expression of avoidance or approach behavior.
Journal Article
Behavioral and neurobiological mechanisms of punishment: implications for psychiatric disorders
by
McNally, Gavan P
,
Jean-Richard-Dit-Bressel, Philip
,
Killcross, Simon
in
Addictions
,
Amygdala
,
Antisocial personality disorder
2018
Punishment involves learning about the relationship between behavior and its adverse consequences. Punishment is fundamental to reinforcement learning, decision-making and choice, and is disrupted in psychiatric disorders such as addiction, depression, and psychopathy. However, little is known about the brain mechanisms of punishment and much of what is known is derived from study of superficially similar, but fundamentally distinct, forms of aversive learning such as fear conditioning and avoidance learning. Here we outline the unique conditions that support punishment, the contents of its learning, and its behavioral consequences. We consider evidence implicating GABA and monoamine neurotransmitter systems, as well as corticostriatal, amygdala, and dopamine circuits in punishment. We show how maladaptive punishment processes are implicated in addictions, impulse control disorders, psychopathy, anxiety, and depression and argue that a better understanding of the cellular, circuit, and cognitive mechanisms of punishment will make important contributions to next generation therapeutic approaches.
Journal Article
Insular cortex mediates approach and avoidance responses to social affective stimuli
by
Ritchey, Maureen
,
Rogers-Carter, Morgan M
,
McGoey, Morgan T
in
Adults
,
Amygdala
,
Animal behavior
2018
Social animals detect the affective states of conspecifics and utilize this information to orchestrate social interactions. In a social affective preference text in which experimental adult male rats could interact with either naive or stressed conspecifics, the experimental rats either approached or avoided the stressed conspecific, depending upon the age of the conspecific. Specifically, experimental rats approached stressed juveniles but avoided stressed adults. Inhibition of insular cortex, which is implicated in social cognition, and blockade of insular oxytocin receptors disrupted the social affective behaviors. Oxytocin application increased intrinsic excitability and synaptic efficacy in acute insular cortex slices, and insular oxytocin administration recapitulated the behaviors observed toward stressed conspecifics. Network analysis of c-Fos immunoreactivity in 29 regions identified functional connectivity between insular cortex, prefrontal cortex, amygdala and the social decision-making network. These results implicate insular cortex as a key component in the circuit underlying age-dependent social responses to stressed conspecifics.
Journal Article
Input-specific control of reward and aversion in the ventral tegmental area
2012
Ventral tegmental area (VTA) dopamine neurons have important roles in adaptive and pathological brain functions related to reward and motivation. However, it is unknown whether subpopulations of VTA dopamine neurons participate in distinct circuits that encode different motivational signatures, and whether inputs to the VTA differentially modulate such circuits. Here we show that, because of differences in synaptic connectivity, activation of inputs to the VTA from the laterodorsal tegmentum and the lateral habenula elicit reward and aversion in mice, respectively. Laterodorsal tegmentum neurons preferentially synapse on dopamine neurons projecting to the nucleus accumbens lateral shell, whereas lateral habenula neurons synapse primarily on dopamine neurons projecting to the medial prefrontal cortex as well as on GABAergic (γ-aminobutyric-acid-containing) neurons in the rostromedial tegmental nucleus. These results establish that distinct VTA circuits generate reward and aversion, and thereby provide a new framework for understanding the circuit basis of adaptive and pathological motivated behaviours.
Through the use of a combination of state-of-the-art techniques, different populations of ventral tegmental area dopamine neurons in the mouse are shown to form separate circuits with distinct connectivity: neurons receiving input from the laterodorsal tegmentum and lateral habenula are found to mediate reward and aversion, respectively.
Control of reward and aversion by midbrain neurons
Dopamine neurons in the ventral tegmental area (VTA) are perhaps best known for their reward-related activity, but they can also signal aversion. Here, the authors show that different populations of VTA neurons form separate circuits with distinct connectivity for reward and aversion. Using a combination of state-of-the-art functional anatomical techniques, they find that neurons receiving input from the laterodorsal tegmentum and lateral habenula mediate reward and aversion, respectively.
Journal Article
Neuromodulation in circuits of aversive emotional learning
2019
Emotional learning and memory are functionally and dysfunctionally regulated by the neuromodulatory state of the brain. While the role of excitatory and inhibitory neural circuits mediating emotional learning and its control have been the focus of much research, we are only now beginning to understand the more diffuse role of neuromodulation in these processes. Recent experimental studies of the acetylcholine, noradrenaline and dopamine systems in fear learning and extinction of fear responding provide surprising answers to key questions in neuromodulation. One area of research has revealed how modular organization, coupled with context-dependent coding modes, allows for flexible brain-wide or targeted neuromodulation. Other work has shown how these neuromodulators act in downstream targets to enhance signal-to-noise ratios and gain, as well as to bind distributed circuits through neuronal oscillations. These studies elucidate how different neuromodulatory systems regulate aversive emotional processing and reveal fundamental principles of neuromodulatory function.
Journal Article
The coding of valence and identity in the mammalian taste system
2018
The ability of the taste system to identify a tastant (what it tastes like) enables animals to recognize and discriminate between the different basic taste qualities
1
,
2
. The valence of a tastant (whether it is appetitive or aversive) specifies its hedonic value and elicits the execution of selective behaviours. Here we examine how sweet and bitter are afforded valence versus identity in mice. We show that neurons in the sweet-responsive and bitter-responsive cortex project to topographically distinct areas of the amygdala, with strong segregation of neural projections conveying appetitive versus aversive taste signals. By manipulating selective taste inputs to the amygdala, we show that it is possible to impose positive or negative valence on a neutral water stimulus, and even to reverse the hedonic value of a sweet or bitter tastant. Remarkably, mice with silenced neurons in the amygdala no longer exhibit behaviour that reflects the valence associated with direct stimulation of the taste cortex, or with delivery of sweet and bitter chemicals. Nonetheless, these mice can still identify and discriminate between tastants, just as wild-type controls do. These results help to explain how the taste system generates stereotypic and predetermined attractive and aversive taste behaviours, and support the existence of distinct neural substrates for the discrimination of taste identity and the assignment of valence.
The identity and hedonic value of tastes are encoded in distinct neural substrates; in mice, the amygdala is necessary and sufficient to drive valence-specific behaviours in response to bitter or sweet taste stimuli, and the cortex can independently represent taste identity.
Journal Article
Dissociable hindbrain GLP1R circuits for satiety and aversion
by
Huang, Kuei-Pin
,
Acosta, Alisha A.
,
Almeida, Milena S.
in
14/10
,
631/378/1488/393
,
631/378/87
2024
The most successful obesity therapeutics, glucagon-like peptide-1 receptor (GLP1R) agonists, cause aversive responses such as nausea and vomiting
1
,
2
, effects that may contribute to their efficacy. Here, we investigated the brain circuits that link satiety to aversion, and unexpectedly discovered that the neural circuits mediating these effects are functionally separable. Systematic investigation across drug-accessible GLP1R populations revealed that only hindbrain neurons are required for the efficacy of GLP1-based obesity drugs. In vivo two-photon imaging of hindbrain GLP1R neurons demonstrated that most neurons are tuned to either nutritive or aversive stimuli, but not both. Furthermore, simultaneous imaging of hindbrain subregions indicated that area postrema (AP) GLP1R neurons are broadly responsive, whereas nucleus of the solitary tract (NTS) GLP1R neurons are biased towards nutritive stimuli. Strikingly, separate manipulation of these populations demonstrated that activation of NTS
GLP1R
neurons triggers satiety in the absence of aversion, whereas activation of AP
GLP1R
neurons triggers strong aversion with food intake reduction. Anatomical and behavioural analyses revealed that NTS
GLP1R
and AP
GLP1R
neurons send projections to different downstream brain regions to drive satiety and aversion, respectively. Importantly, GLP1R agonists reduce food intake even when the aversion pathway is inhibited. Overall, these findings highlight NTS
GLP1R
neurons as a population that could be selectively targeted to promote weight loss while avoiding the adverse side effects that limit treatment adherence.
The neural circuits in the hindbrain that link satiety and aversion are shown to be separate, raising the possibility of developing obesity drugs without the common side effects of nausea and vomiting.
Journal Article
The effect of NAD-299 and TCB-2 on learning and memory, hippocampal BDNF levels and amyloid plaques in Streptozotocin-induced memory deficits in male rats
by
Rohani, Ali Haeri
,
Asl, Sara Soleimani
,
Shahidi, Siamak
in
Advertising executives
,
Alzheimer's disease
,
Amyloid beta-protein
2018
Alzheimer's disease (AD) is the most common form of dementia characterized by a progressive decline in cognitive function. The serotonergic system via the 5-HT1A receptor and 5-HT2A receptor is proposed to affect the cognitive process.
In the present study, the effects of NAD-299 (5-HT1AR antagonist) and TCB-2 (5-HT2AR agonist) on learning and memory processes, hippocampal brain-derived neurotrophic factor (BDNF) levels, neuronal necrosis, and Aβ plaque production have been investigated on the intracerebroventricular (icv) injection of streptozotocin (STZ)-induced memory deficits in rats.
Fifty-four adult male Wistar rats (250-300 g) were divided into six groups (n = 9 in each group): control, sham-operated, AD (icv-STZ (3 mg/kg, 10 μl)), AD+NAD-299 (5 μg/1 μl icv for 30 days), AD+TCB-2 (5 μg/1 μl icv for 30 days), and AD+NAD-299 + TCB-2 (NAD-299 (5 μg/0.5 μl icv) and TCB-2 (5 μg/0.5 μl icv) for 30 days). Following the treatment period, rats were subjected to behavioral tests of learning and memory. Then, hippocampal BDNF, amyloid-beta (Aβ) plaque, and neuronal loss were determined by ELISA Kit, Congo red staining, and Nissl staining, respectively.
The results of behavioral tests showed that icv-STZ injection decreased the discrimination index in the novel object recognition (NOR) test. In the passive avoidance learning (PAL) task, icv-STZ injection significantly decreased step-through latency (STLr) and increased time spent in dark compartment (TDC). Treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 attenuated the STZ-induced memory impairment in both NOR and PAL tasks. icv-STZ induced a decrease in hippocampal BDNF levels and increased Aβ plaques production in the brain, whereas treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 reduced Aβ plaques in the brain and increased the hippocampal BDNF level. Results of Nissl staining showed that icv-STZ injection increased neuronal loss in the hippocampus, while treatment with NAD-299, TCB-2, and NAD-299 + TCB-2 reduced hippocampal neurodegeneration.
These findings suggest that 5-HT1AR blockade by NAD-299 and 5-HT2AR activation by TCB-2 improve cognitive dysfunction in icv-STZ-treated rats, and these drugs may potentially prevent the progression of AD.
Journal Article
GFRAL-expressing neurons suppress food intake via aversive pathways
by
Gordian, Desiree
,
Olson, David P.
,
Jørgensen, Sebastian Beck
in
Animals
,
Avoidance Learning - drug effects
,
Biological Sciences
2021
The TGFβ cytokine family member, GDF-15, reduces food intake and body weight and represents a potential treatment for obesity. Because the brainstem-restricted expression pattern of its receptor, GDNF Family Receptor α–like (GFRAL), presents an exciting opportunity to understand mechanisms of action for area postrema neurons in food intake; we generated GfralCre and conditional GfralCreERT mice to visualize and manipulate GFRAL neurons. We found infection or pathophysiologic states (rather than meal ingestion) stimulate GFRAL neurons. TRAP-Seq analysis of GFRAL neurons revealed their expression of a wide range of neurotransmitters and neuropeptides. Artificially activating GfralCre-expressing neurons inhibited feeding, decreased gastric emptying, and promoted a conditioned taste aversion (CTA). GFRAL neurons most strongly innervate the parabrachial nucleus (PBN), where they target CGRP-expressing (CGRPPBN) neurons. Silencing CGRPPBN neurons abrogated the aversive and anorexic effects of GDF-15. These findings suggest that GFRAL neurons link non–meal-associated pathophysiologic signals to suppress nutrient uptake and absorption.
Journal Article
Zebrafish capable of generating future state prediction error show improved active avoidance behavior in virtual reality
2021
Animals make decisions under the principle of reward value maximization and surprise minimization. It is still unclear how these principles are represented in the brain and are reflected in behavior. We addressed this question using a closed-loop virtual reality system to train adult zebrafish for active avoidance. Analysis of the neural activity of the dorsal pallium during training revealed neural ensembles assigning rules to the colors of the surrounding walls. Additionally, one third of fish generated another ensemble that becomes activated only when the real perceived scenery shows discrepancy from the predicted favorable scenery. The fish with the latter ensemble escape more efficiently than the fish with the former ensembles alone, even though both fish have successfully learned to escape, consistent with the hypothesis that the latter ensemble guides zebrafish to take action to minimize this prediction error. Our results suggest that zebrafish can use both principles of goal-directed behavior, but with different behavioral consequences depending on the repertoire of the adopted principles.
Using a closed-loop virtual reality system for fish, the authors show that zebrafish are capable of assigning rules to the scenery they see, and of generating a state prediction error by comparing reality with a prediction derived from an internal model.
Journal Article