Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
28 result(s) for "Avoparcin"
Sort by:
Management Options for Reducing the Release of Antibiotics and Antibiotic Resistance Genes to the Environment
There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic-resistance determinants via environmental pathways, with the ultimate goal of extending the useful life span of antibiotics. We also examined incentives and disincentives for action. We focused on management options with respect to limiting agricultural sources; treatment of domestic, hospital, and industrial wastewater; and aquaculture. We identified several options, such as nutrient management, runoff control, and infrastructure upgrades. Where appropriate, a cross-section of examples from various regions of the world is provided. The importance of monitoring and validating effectiveness of management strategies is also highlighted. Finally, we describe a case study in Sweden that illustrates the critical role of communication to engage stakeholders and promote action. Environmental releases of antibiotics and antibiotic-resistant bacteria can in many cases be reduced at little or no cost. Some management options are synergistic with existing policies and goals. The anticipated benefit is an extended useful life span for current and future antibiotics. Although risk reductions are often difficult to quantify, the severity of accelerating worldwide morbidity and mortality rates associated with antibiotic resistance strongly indicate the need for action.
Genomic Surveillance of Enterococcus faecium Reveals Limited Sharing of Strains and Resistance Genes between Livestock and Humans in the United Kingdom
The rise in rates of human infection caused by vancomycin-resistant Enterococcus faecium (VREfm) strains between 1988 to the 2000s in Europe was suggested to be associated with acquisition from livestock. As a result, the European Union banned the use of the glycopeptide drug avoparcin as a growth promoter in livestock feed. While some studies reported a decrease in VREfm in livestock, others reported no reduction. Here, we report the first livestock VREfm prevalence survey in the UK since 2003 and the first large-scale study using whole-genome sequencing to investigate the relationship between E. faecium strains in livestock and humans. We found a low prevalence of VREfm in retail meat and limited evidence for recent sharing of strains between livestock and humans with bloodstream infection. There was evidence for limited sharing of genes encoding antibiotic resistance between these reservoirs, a finding which requires further research. Vancomycin-resistant Enterococcus faecium (VREfm) is a major cause of nosocomial infection and is categorized as high priority by the World Health Organization global priority list of antibiotic-resistant bacteria. In the past, livestock have been proposed as a putative reservoir for drug-resistant E. faecium strains that infect humans, and isolates of the same lineage have been found in both reservoirs. We undertook cross-sectional surveys to isolate E. faecium (including VREfm) from livestock farms, retail meat, and wastewater treatment plants in the United Kingdom. More than 600 isolates from these sources were sequenced, and their relatedness and antibiotic resistance genes were compared with genomes of almost 800 E. faecium isolates from patients with bloodstream infection in the United Kingdom and Ireland. E. faecium was isolated from 28/29 farms; none of these isolates were VREfm, suggesting a decrease in VREfm prevalence since the last UK livestock survey in 2003. However, VREfm was isolated from 1% to 2% of retail meat products and was ubiquitous in wastewater treatment plants. Phylogenetic comparison demonstrated that the majority of human and livestock-related isolates were genetically distinct, although pig isolates from three farms were more genetically related to human isolates from 2001 to 2004 (minimum of 50 single-nucleotide polymorphisms [SNPs]). Analysis of accessory (variable) genes added further evidence for distinct niche adaptation. An analysis of acquired antibiotic resistance genes and their variants revealed limited sharing between humans and livestock. Our findings indicate that the majority of E. faecium strains infecting patients are largely distinct from those from livestock in this setting, with limited sharing of strains and resistance genes. IMPORTANCE The rise in rates of human infection caused by vancomycin-resistant Enterococcus faecium (VREfm) strains between 1988 to the 2000s in Europe was suggested to be associated with acquisition from livestock. As a result, the European Union banned the use of the glycopeptide drug avoparcin as a growth promoter in livestock feed. While some studies reported a decrease in VREfm in livestock, others reported no reduction. Here, we report the first livestock VREfm prevalence survey in the UK since 2003 and the first large-scale study using whole-genome sequencing to investigate the relationship between E. faecium strains in livestock and humans. We found a low prevalence of VREfm in retail meat and limited evidence for recent sharing of strains between livestock and humans with bloodstream infection. There was evidence for limited sharing of genes encoding antibiotic resistance between these reservoirs, a finding which requires further research.
New Avoparcin-like Molecules from the Avoparcin Producer Amycolatopsis coloradensis ATCC 53629
Amycolatopsis coloradensis ATCC 53629 is the producer of the glycopeptide antibiotic avoparcin. While setting up the production of the avoparcin complex, in view of its use as analytical standard, we uncovered the production of a to-date not described ristosamynil-avoparcin. Ristosamynil-avoparcin is produced together with α- and β-avoparcin (overall indicated as the avoparcin complex). Selection of one high producer morphological variant within the A. coloradensis population, together with the use of a new fermentation medium, allowed to increase productivity of the avoparcin complex up to 9 g/L in flask fermentations. The selected high producer displayed a non-spore forming phenotype. All the selected phenotypes, as well as the original unselected population, displayed invariably the ability to produce a complex rich in ristosamynil-avoparcin. This suggested that the original strain deposited was not conforming to the description or that long term storage of the lyovials has selected mutants from the original population.
Is the Use of Monensin Another Trojan Horse for the Spread of Antimicrobial Resistance?
Antimicrobial resistance (AMR) is a complex and somewhat unpredictable phenomenon. Historically, the utilization of avoparcin in intensive farming during the latter part of the previous century led to the development of resistance to vancomycin, a crucial antibiotic in human medicine with life-saving properties. Currently, in the European Union, there is a growing reliance on the ionophore antibiotic monensin (MON), which acts both as a coccidiostat in poultry farming and as a preventative measure against ketosis in lactating cows. Although many researchers claim that MON does not induce cross-resistance to antibiotics of clinical relevance in human medicine, some conflicting reports exist. The numerous applications of MON in livestock farming and the consequent dissemination of the compound and its metabolites in the environment require further investigation to definitively ascertain whether MON represents a potential vector for the propagation of AMR. It is imperative to emphasize that antibiotics cannot substitute sound animal husbandry practices or tailored dietary regimens in line with the different production cycles of livestock. Consequently, a rigorous evaluation is indispensable to assess whether the economic benefits associated with MON usage justify its employment, also considering its local and global environmental ramifications and the potential risk of instigating AMR with increased costs for its control.
Vancomycin Treatment of Infective Endocarditis Is Linked with Recently Acquired Obesity
Gut microbiota play a major role in digestion and energy conversion of nutrients. Antibiotics, such as avoparcin (a vancomycin analogue), and probiotics, such as Lactobacillus species, have been used to increase weight in farm animals. We tested the effect of antibiotics given for infective endocarditis (IE) on weight gain (WG). Forty-eight adults with a definite diagnosis of bacterial IE (antibiotic group) were compared with forty-eight age-matched controls without IE. Their body mass index (BMI) was collected at one month before the first symptoms and one year after hospital discharge. The BMI increased significantly and strongly in vancomycin-plus-gentamycin-treated patients (mean [+/-SE] kg/m(2), +2.3 [0.9], p = 0.03), but not in controls or in patients treated with other antibiotics. Seventeen patients had a BMI increase of >or=10%, and five of the antibiotic group developed obesity. The treatment by vancomycin-plus-gentamycin was an independent predictor of BMI increase of >or=10% (adjusted OR, 6.7; 95% CI, 1.37-33.0; p = 0.02), but not treatment with other antibiotics. Weight gain was particularly high in male patients older than 65 who did not undergo cardiac surgery. Indeed, all three vancomycin-treated patients with these characteristics developed obesity. A major and significant weight gain can occur after a six-week intravenous treatment by vancomycin plus gentamycin for IE with a risk of obesity, especially in males older than 65 who have not undergone surgery. We speculate on the role of the gut colonization by Lactobacillus sp, a microorganism intrinsically resistant to vancomycin, used as a growth promoter in animals, and found at a high concentration in the feces of obese patients. Thus, nutritional programs and weight follow-up should be utilized in patients under such treatment.
Significant reduction of vancomycin resistant E. faecium in the Norwegian broiler population coincided with measures taken by the broiler industry to reduce antimicrobial resistant bacteria
Vancomycin resistant enterococci (VRE) belong to the most common causes of nosocomial infections worldwide. It has been reported that use of the glycopeptide growth promoter avoparcin selected for a significant livestock-reservoir of VRE in many European countries, including Norway. However, although avoparcin was banned as a feed-additive in 1995, VRE have for unknown reasons consistently been reported in samples from Norwegian broilers. When avoparcin was banned, broiler-feed was supplemented with the polyether ionophore narasin in order to control the diseases coccidiosis and the frequent sequela necrotic enteritis. A potential link between transferrable vancomycin resistance and reduced susceptibility to narasin was recently reported. The use of narasin as a feed additive was abolished by the Norwegian broiler industry in 2016 and since then, broilers have been reared without in-feed antibacterial supplements. In this study, we demonstrate that all VRE isolates from Norwegian broilers collected in 2006-2014 displayed reduced susceptibility to narasin. Surveillance data collected two years after the narasin abolishment show a significant reduction in VRE, below the detection limit of the surveillance method, and a concurrent marked reduction in Enterococcus faecium with reduced susceptibility to narasin. The significant decline of E. faecium with reduced susceptibility to these antimicrobial compounds also coincided with an increased focus on cleaning and disinfection between broiler flocks. Furthermore, data from a controlled in vivo experiment using Ross 308 broilers indicate that the proportion of E. faecium with reduced susceptibility to narasin was heavily reduced in broilers fed a narasin-free diet compared to a diet supplemented with narasin. Our results are consistent with that the abolishment of this feed additive, possibly in combination with the increased focus on cleaning and disinfection, has had a substantial impact on the occurrence of VRE in the Norwegian broiler population.
Purity assessment for avoparcin
Well-characterized pure-substance reference materials for the use as calibrants are essential to establish the metrological traceability of the results of chemical measurements. Normally, the characterization of this type of reference material is conducted through a thorough purity assessment of the compound concerned. For this reason, studies on purity assessment, especially for neat organic compounds, continues as an important part of work being undertaken by metrological institutions around the world. Among others, the need for certified pure reference standards continues to increase for residues analysis in foods, particularly for those compounds which have been banned for food safety reasons, but their residues in foods are still monitored under food surveillance program in many countries. In this respect, avoparcin serves as a very good example where testing laboratories have difficulties in obtaining traceable and comparable results on determination of avoparcin in food matrix samples due, in part, to the unavailability of certified pure-substance reference material as calibrant. In this study, it was attempted to assess the purity of a commercially available test material of avoparcin using the mass balance approach. The objective of this paper is to share the difficulties encountered during the course of purity assessment and how they were addressed. As expected, the most challenging part of work was to identify and estimate the amount of unknown impurities, both organic and inorganic-related ones, given the chemical structure and properties of avoparcin. For instance, avoparcin exists in two forms in the test material, i.e., α- and β-avoparcin, and they were found to be susceptible to hydrolysis under certain conditions.
Comparative study of vanA gene transfer from Enterococcus faecium to Enterococcus faecalis and to Enterococcus faecium in the intestine of mice
abstract Vancomycin‐resistant enterococci represent a large reservoir in animals because of the use of avoparcin as a growth promoter in Europe. These strains of animal origin enter the food chain and can either colonize the human gut or transfer their resistance genes to the human microbiota. In this study, we compared the transfer of vancomycin resistance from resistant animal Enterococcus faecium to sensitive human Enterococcus faecalis and E. faecium. We analysed these transfers in dibiotic mice and human faecal flora‐associated mice. VanA transfer from animal E. faecium to human E. faecalis occurred in dibiotic mice. The transconjugants appeared rapidly and persisted at levels between 3.0 and 4.0 log10 colony‐forming units g−1 of faeces. In human faecal flora‐associated mice, vanA gene transfer was not detected towards E. faecalis but was possible between E. faecium strains. Our experiments revealed the possibility of vanA transfer from animal E. faecium to human E. faecalis in vitro and in vivo in the intestine of dibiotic mice. However, intraspecies transfer of vanA gene seems more common than interspecies transfer among enterococci.
Persistence of vancomycin-resistant enterococci (VRE) on Norwegian broiler farms
Five Norwegian broiler farms previously identified as housing broilers carrying vancomycin-resistant enterococci (VRE) were examined for the presence of VRE 4 years after avoparcin was banned. Environmental samples were obtained from empty, cleaned broiler houses. Faecal samples were collected weekly from the flock housed after the environmental sampling. The hatchery from where the chicks originated was also sampled. VRE were found to be present in the farm environment after depopulation and cleanup of the broiler houses. Within 3 weeks after introduction to the farm, all broiler flocks tested positive for VRE. VRE were not isolated from the hatchery.
longitudinal study to assess the persistence of vancomycin-resistant Enterococcus faecium (VREF) on an intensive broiler farm in the United Kingdom
Seven years after the ban of avoparcin, VREF could still be isolated within sectors of the UK broiler industry. The aim of this study was to assess whether there is a carryover of VREF between consecutive flocks of birds, to conduct a preliminary investigation of possible routes of entry of VREF into broiler houses and to follow the dynamics of VREF shed by growing birds. A series of nine visits were made to two of six houses on a conventional broiler farm. A total of 343 vanA VREF were recovered from environmental (95/843) and faecal (248/416) samples. Significant differences were observed in the carryover of VREF between pre- and postcohort postcleaning and disinfection visits (RR 0.57, P=0.006). Ninety-nine percent of the VREF isolates were resistant to more than five antimicrobials, with 42 isolates (n=49) positive for erm(B) and 32 (n=40) for vat(E). Pulsed field gel electrophoresis (PFGE) typing identified 50 PFGE types within 15 different PFGE clusters of 90% similarity, demonstrating a high level of genetic diversity within VREF populations from epidemiologically related broiler flocks and broiler houses. Further characterization of Tn1546 from different clones showed a low diversity of Tn-types, suggesting horizontal transfer of resistance determinants between different genetic clones. Thus, this study does not only show the persistence of VREF but also of multi-drug resistant lineages of VREF.