Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
12 result(s) for "Avsunviroidae"
Sort by:
Eggplant latent viroid is located in the chloroplasts and nuclei of eggplant infected cells
Viroids that belong to genera Avsunviroid and Pelamovirod (family Avsunviroidae ) replicate and accumulate in the chloroplasts of infected cells. In this report, we confirmed by RNA in situ hybridization using digoxigenin-UTP-labelled riboprobes that the positive strands of eggplant latent viroid (ELVd), the only member of genus Elaviroid within the family Avsunviroidae , also accumulate in the chloroplasts of infected cells. However, comparison of ELVd in situ hybridization signals with those from bona fide chloroplastic and nuclear non-coding RNAs, such as chloroplast 5S rRNA and U1 small nuclear RNA, supports the notion that this viroid is also present in the nuclei of infected cells. These results suggest that the subcellular localization of viroids within the family Avsunviroidae may be more complex than previously assumed with dynamic presence in several compartments during the infectious cycle.
Viroids of the Mediterranean Basin
There has been substantial progress in the Mediterranean countries regarding research on viroids. Twenty-nine viroid species, all belonging to Pospiviroidae and Avsunviroidae genera, have been detected in the Mediterranean Basin. Not only have detection methods, such as reverse transcription-quantitative polymerase chain reaction and next-generation sequencing, been used for viroid detection, along with molecular hybridization techniques allowing for rapid detection, identification, and characterization of known and novel viroids in these countries, but eradication measures have also been taken that allowed for the efficient elimination of certain viroids in a number of Mediterranean countries. The eradication measures were followed as recommended by the European and Mediterranean Plant Protection Organization, which is known by its abbreviation, EPPO. The Mediterranean Region has been a niche for viroids since ancient times due to the warm climate and the socio-cultural conditions that facilitate viroid transmission among different host plant species.
Viroids: Non-Coding Circular RNAs Able to Autonomously Replicate and Infect Higher Plants
Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246–430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.
Viroids, Satellite RNAs and Prions: Folding of Nucleic Acids and Misfolding of Proteins
Theodor (“Ted”) Otto Diener (* 28 February 1921 in Zürich, Switzerland; † 28 March 2023 in Beltsville, MD, USA) pioneered research on viroids while working at the Plant Virology Laboratory, Agricultural Research Service, USDA, in Beltsville. He coined the name viroid and defined viroids’ important features like the infectivity of naked single-stranded RNA without protein-coding capacity. During scientific meetings in the 1970s and 1980s, viroids were often discussed at conferences together with other “subviral pathogens”. This term includes what are now called satellite RNAs and prions. Satellite RNAs depend on a helper virus and have linear or, in the case of virusoids, circular RNA genomes. Prions, proteinaceous infectious particles, are the agents of scrapie, kuru and some other diseases. Many satellite RNAs, like viroids, are non-coding and exert their function by thermodynamically or kinetically controlled folding, while prions are solely host-encoded proteins that cause disease by misfolding, aggregation and transmission of their conformations into infectious prion isoforms. In this memorial, we will recall the work of Ted Diener on subviral pathogens.
A Novel Self-Cleaving Viroid-Like RNA Identified in RNA Preparations from a Citrus Tree Is Not Directly Associated with the Plant
Viroid and viroid-like satellite RNAs are infectious, circular, non-protein coding RNAs reported in plants only so far. Some viroids (family Avsunviroidae) and viroid-like satellite RNAs share self-cleaving activity mediated by hammerhead ribozymes (HHRzs) endowed in both RNA polarity strands. Using a homology-independent method based on the search for conserved structural motifs of HHRzs in reads and contigs from high-throughput sequenced RNAseq libraries, we identified a novel small (550 nt) viroid-like RNA in a library from a Citrus reticulata tree. Such a viroid-like RNA contains a HHRz in both polarity strands. Northern blot hybridization assays showed that circular forms of both polarity strands of this RNA (tentatively named citrus transiently-associated hammerhead viroid-like RNA1 (CtaHVd-LR1)) exist, supporting its replication through a symmetric pathway of the rolling circle mechanism. CtaHVd-LR1 adopts a rod-like conformation and has the typical features of quasispecies. Its HHRzs were shown to be active during transcription and in the absence of any protein. CtaHVd-LR1 was not graft-transmissible, and after its first identification, it was not found again in the original citrus source when repeatedly searched in the following years, suggesting that it was actually not directly associated with the plant. Therefore, the possibility that this novel self-cleaving viroid-like RNA is actually associated with another organism (e.g., a fungus), in turn, transiently associated with citrus plants, is proposed.
Viroid Replication, Movement, and the Host Factors Involved
Viroids represent distinctive infectious agents composed solely of short, single-stranded, circular RNA molecules. In contrast to viruses, viroids do not encode for proteins and lack a protective coat protein. Despite their apparent simplicity, viroids have the capacity to induce diseases in plants. Currently, extensive research is being conducted on the replication cycle of viroids within both the Pospiviroidae and Avsunviroidae families, shedding light on the intricacies of the associated host factors. Utilizing the potato spindle tuber viroid as a model, investigations into the RNA structural motifs involved in viroid trafficking between different cell types have been thorough. Nevertheless, our understanding of the host factors responsible for the intra- and inter-cellular movement of viroids remains highly incomplete. This review consolidates our current knowledge of viroid replication and movement within both families, emphasizing the structural basis required and the identified host factors involved. Additionally, we explore potential host factors that may mediate the intra- and inter-cellular movement of viroids, addressing gaps in our understanding. Moreover, the potential application of viroids and the emergence of novel viroid-like cellular parasites are also discussed.
Viroids and viroid-host interactions
Although they induce symptoms in plants similar to those accompanying virus infections, viroids have unique structural, functional, and evolutionary characteristics. They are composed of a small, nonprotein-coding, single-stranded, circular RNA, with autonomous replication. Viroid species are clustered into the families Pospiviroidae and Avsunviroidae, whose members replicate (and accumulate) in the nucleus and chloroplast, respectively. Viroids replicate in three steps through an RNA-based rolling-circle mechanism: synthesis of longer-than-unit strands catalyzed by host RNA polymerases; processing to unit-length, which in the family Avsunviroidae is mediated by hammerhead ribozymes; and circularization. Within the initially infected cells, viroid RNA must move to its replication organelle, with the resulting progeny then invading adjacent cells through plasmodesmata and reaching distal parts via the vasculature. To carry out these movements, viroids must interact with host factors. The mature viroid RNA could be the primary pathogenic effector or, alternatively, viroids could exert their pathogenic effects via RNA silencing.
What has been happening with viroids?
Viroids are naked nucleic acids that do not code for any proteins and yet are able to be replicated, processed, moved cell-to-cell and systemically through their host plants, as well as resist plant defense response and be transmitted from plant to plant, without a protective coat. All of the information specifying these functions lies within their nucleotide sequence and the RNA structures they form. This review examines what information about these processes has been acquired since 2008. Sequences involved in viroid replication and movement within the plant have been identified, in particular for the nuclear-associated ( Pospiviroidae ) viroids, as have sequences of one chloroplast-associated viroid ( Avsunviroidae ) involved in chloroplast uptake. The enzymes involved in ligation of viroids of either of the above two types also have been identified. Viroid sequences that are involved in pathogenicity through the RNA silencing system and the target of their viroid-specific small RNAs also have been identified. Effects of viroid infection on plant gene expression have been assessed for several viroids, and further specific interactions between viroids and host proteins have been identified. The variation in sequence of natural or passaged populations of viroids in various host species has been examined, and the effects of the host have been evaluated. New approaches to obtaining resistance to viroid infection have been examined or implemented, as have combinations of approaches to control viroid infection, and to better understand how viroids are transmitted. Finally, new viroids have also been discovered and characterized.
Structural Analyses of Avocado sunblotch viroid Reveal Differences in the Folding of Plus and Minus RNA Strands
Viroids are small pathogenic circular single-stranded RNAs, present in two complementary sequences, named plus and minus, in infected plant cells. A high degree of complementarities between different regions of the RNAs allows them to adopt complex structures. Since viroids are naked non-coding RNAs, interactions with host factors appear to be closely related to their structural and catalytic characteristics. Avocado sunblotch viroid (ASBVd), a member of the family Avsunviroidae, replicates via a symmetric RNA-dependant rolling-circle process, involving self-cleavage via hammerhead ribozymes. Consequently, it is assumed that ASBVd plus and minus strands adopt similar structures. Moreover, by computer analyses, a quasi-rod-like secondary structure has been predicted. Nevertheless, secondary and tertiary structures of both polarities of ASBVd remain unsolved. In this study, we analyzed the characteristic of each strand of ASBVd through biophysical analyses. We report that ASBVd transcripts of plus and minus polarities exhibit differences in electrophoretic mobility under native conditions and in thermal denaturation profiles. Subsequently, the secondary structures of plus and minus polarities of ASBVd were probed using the RNA-selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method. The models obtained show that both polarities fold into different structures. Moreover, our results suggest the existence of a kissing-loop interaction within the minus strand that may play a role in in vivo viroid life cycle.
Ancient RNA? RT-PCR of 50-year-old RNA identifies peach latent mosaic viroid
The preservation of macromolecules is at best haphazard. Modern techniques have improved the detection of ancient DNA and proteins, but there is little information on the preservation of RNA. Fifty-year-old dried leaf material showing symptoms of peach calico disease was used successfully in RT-PCRs to amplify peach latent mosaic viroid (PLMVd) RNA and the mRNA for the large subunit of ribulose 1,5-bisphosphate carboxylase (rubisco). These results indicate that naked RNA may be preserved, under suitable conditions, for at least 50 years. The results are discussed in the context of ancient DNA and proteins and the process of fossilization.