Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
133,526
result(s) for
"BASIC"
Sort by:
Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis
by
Shirasu, Ken
,
Sasaki-Sekimoto, Yuko
,
Ohta, Hiroyuki
in
Anthocyanins - biosynthesis
,
Arabidopsis
,
Arabidopsis - drug effects
2013
Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2.
Journal Article
Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade
by
Thomashow, Michael F
,
He, Zuhua
,
Yang, Yinong
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis - growth & development
2012
Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1–JAZ–DELLA–PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.
Journal Article
Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism
2019
Mitochondrial metabolism is an attractive target for cancer therapy
1
,
2
. Reprogramming metabolic pathways could improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC)
1
,
3
. Here we show that BTB and CNC homology1 (BACH1)
4
, a haem-binding transcription factor that is increased in expression in tumours from patients with TNBC, targets mitochondrial metabolism. BACH1 decreases glucose utilization in the tricarboxylic acid cycle and negatively regulates transcription of electron transport chain (ETC) genes. BACH1 depletion by shRNA or degradation by hemin sensitizes cells to ETC inhibitors such as metformin
5
,
6
, suppressing growth of both cell line and patient-derived tumour xenografts. Expression of a haem-resistant BACH1 mutant in cells that express a short hairpin RNA for
BACH1
rescues the BACH1 phenotype and restores metformin resistance in hemin-treated cells and tumours
7
. Finally,
BACH1
gene expression inversely correlates with ETC gene expression in tumours from patients with breast cancer and in other tumour types, which highlights the clinical relevance of our findings. This study demonstrates that mitochondrial metabolism can be exploited by targeting BACH1 to sensitize breast cancer and potentially other tumour tissues to mitochondrial inhibitors.
The transcription factor BACH1, which targets mitochondrial metabolism, is expressed at high levels in several types of cancer; reducing its expression in tumours makes them more susceptible to treatment with mitochondrial inhibitors.
Journal Article
Let's explore needs and wants
by
Waxman, Laura Hamilton, author
in
Money Juvenile literature.
,
Basic needs Juvenile literature,
,
Money.
2019
\"Young readers will learn to distinguish between the things they really need (food and clothing) and the things they want (toys) in this ... look at wants and needs\"--Publisher marketing.
LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury
2020
Sensing and clearance of dysfunctional lysosomes is critical for cellular homeostasis. Here we show that transcription factor EB (TFEB)—a master transcriptional regulator of lysosomal biogenesis and autophagy—is activated during the lysosomal damage response, and its activation is dependent on the function of the ATG conjugation system, which mediates LC3 lipidation. In addition, lysosomal damage triggers LC3 recruitment on lysosomes, where lipidated LC3 interacts with the lysosomal calcium channel TRPML1, facilitating calcium efflux essential for TFEB activation. Furthermore, we demonstrate the presence and importance of this TFEB activation mechanism in kidneys in a mouse model of oxalate nephropathy accompanying lysosomal damage. A proximal tubule-specific TFEB-knockout mouse exhibited progression of kidney injury induced by oxalate crystals. Together, our results reveal unexpected mechanisms of TFEB activation by LC3 lipidation and their physiological relevance during the lysosomal damage response.Nakamura et al. find that the master transcriptional regulator of lysosomal biogenesis and autophagy TFEB is activated following LC3 lipidation during lysosomal damage and show the importance of this mechanism during kidney injury.
Journal Article
Universal basic income
\"An EKS book describing the arguments for and against a universal basic income, drawing on research from around the world, with a particular focus on likelihood of adoption within the United States\"-- Provided by publisher.
The R2R3-MYB Transcription Factor MYB49 Regulates Cadmium Accumulation
by
Li, Weiqiang
,
Wang, Ruling
,
Ju, Qiong
in
Abscisic Acid - metabolism
,
Arabidopsis - genetics
,
Arabidopsis - metabolism
2019
Abscisic acid (ABA) reduces accumulation of potentially toxic cadmium (Cd) in plants. How the ABA signal is transmitted to modulate Cd uptake remains largely unclear. Here, we report that the basic region/Leu zipper transcription factor ABSCISIC ACID-INSENSITIVE5 (ABI5), a central ABA signaling molecule, is involved in ABA-repressed Cd accumulation in plants by physically interacting with a previously uncharacterized R2R3-type MYB transcription factor, MYB49. Overexpression of the Cd-induced MYB49 gene in Arabidopsis (Arabidopsis thaliana) resulted in a significant increase in Cd accumulation, whereas myb49 knockout plants and plants expressing chimeric repressors of MYB49:ERF-associated amphiphilic repression motif repression domain (SRDX49) exhibited reduced accumulation of Cd. Further investigations revealed that MYB49 positively regulates the expression of the basic helix-loop-helix transcription factors bHLH38 and bHLH101 by directly binding to their promoters, leading to activation of IRON-REGULATED TRANSPORTER1, which encodes a metal transporter involved in Cd uptake. MYB49 also binds to the promoter regions of the heavy metal-associated isoprenylated plant proteins (HIPP22) and HIPP44, resulting in up-regulation of their expression and subsequent Cd accumulation. On the other hand, as a feedback mechanism to control Cd uptake and accumulation in plant cells, Cd-induced ABA up-regulates the expression of ABI5, whose protein product interacts with MYB49 and prevents its binding to the promoters of downstream genes, thereby reducing Cd accumulation. Our results provide new insights into the molecular feedback mechanisms underlying ABA signaling-controlled Cd uptake and accumulation in plants.
Journal Article