Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,451 result(s) for "BURDEN OF REGULATION"
Sort by:
Business regulation and economic performance
The Schumpeterian process of 'creative destruction' is an essential ingredient of a dynamic economy. In many countries around the world, however, this process is weakened by pervasive regulation of product and factor markets. This book documents the regulatory obstacles faced by firms, particularly in developing countries, and assesses their implications for firm renewal and macroeconomic performance. Combining a variety of methodological approaches--analytical and empirical, micro and macroeconomic, single- and cross-country-- the book provides evidence that streamlining the regulatory framework would have a significant social pay-off, particularly in developing countries that are also burdened by weak governance. The book's chapters trace out analytically and empirically the links between microeconomic policies and distortions, on the one hand, and aggregate performance in terms of productivity, growth and volatility, on the other. The volume adds to a novel but increasingly influential literature that seeks to understand macroeconomic phenomena from a microeconomic perspective, and derive the relevant lessons for development policy. Such literature is still fairly scarce in the case of industrial countries, and virtually in its infancy for developing countries.
Influenza A hemagglutinin virus-like particles confer protection against influenza B virus infection
Influenza A hemagglutinin (HA), neuraminidase, and/or M2e-containing virus-like particles (VLPs) induce immune responses that contribute to protection against multiple influenza A virus subtypes. In this study, we investigated the protective efficacy of influenza A/H1H3 VLPs against influenza B virus infections (B/Colorado/06/2017 and B/Malaysia/2506/2004, Victoria lineage) in mice. A/H1H3 VLP immunization elicited protection against lethal challenge infections with both B/Colorado and B/Malaysia, significantly reducing lung viral loads and ensuring 100% survival of immunized mice. Sera from A/H1H3VLP-immunized mice recognized inactivated B/Colorado and B/Malaysia virus antigens and enhanced Fc receptor-mediated antibody-dependent cellular cytotoxicity (ADCC) responses. Notably, immune sera reacted with HA, HA1, and HA2 antigens from both B/Colorado and B/Malaysia viruses. A/H1H3VLP immunization also induced lung IgG and IgA antibody responses against HA, HA1, and HA2 of both B viruses, as well as antibody-secreting cell responses (ASC), germinal center B (GC B) responses, and CD4 T cell responses. Additionally, A/H1H3VLP immunization significantly suppressed pro-inflammatory cytokines responses (IFN-γ, IL-6). These results suggest that A/H1H3 VLP hold promise as a candidate for a universal influenza vaccine capable of providing cross-protection against influenza B virus infection.
IL-4 blockade alters the tumor microenvironment and augments the response to cancer immunotherapy in a mouse model
Recent findings show that immune cells constitute a large fraction of the tumor microenvironment and that they modulate tumor progression. Clinical data indicate that chronic inflammation is present at tumor sites and that IL-4, in particular, is upregulated. Thus, we tested whether IL-4 neutralization would affect tumor immunity. Current results demonstrate that the administration of a neutralizing antibody against IL-4 enhances anti-tumor immunity and delays tumor progression. IL-4 blockade also alters inflammation in the tumor microenvironment, reducing the generation of both immunosuppressive M2 macrophages and myeloid-derived suppressor cells, and enhancing tumor-specific cytotoxic T lymphocytes. In addition, IL-4 blockade improves the response to anti-OX40 Ab or CpG oligodeoxynucleotide immunotherapies. These findings suggest that IL-4 affects anti-tumor immunity and constitutes an attractive therapeutic target to reduce immune suppression in the tumor microenvironment, thus enhancing the efficacy of cancer therapy.
HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes
T-cell-based immunotherapies are promising treatments for cancer patients. Although durable responses can be achieved in some patients, many patients fail to respond to these therapies, underscoring the need for improvement with combination therapies. From a screen of 850 bioactive compounds, we identify HSP90 inhibitors as candidates for combination with immunotherapy. We show that inhibition of HSP90 with ganetespib enhances T-cell-mediated killing of patient-derived human melanoma cells by their autologous T cells in vitro and potentiates responses to anti-CTLA4 and anti-PD1 therapy in vivo. Mechanistic studies reveal that HSP90 inhibition results in upregulation of interferon response genes, which are essential for the enhanced killing of ganetespib treated melanoma cells by T cells. Taken together, these findings provide evidence that HSP90 inhibition can potentiate T-cell-mediated anti-tumor immune responses, and rationale to explore the combination of immunotherapy and HSP90 inhibitors. Many patients fail to respond to T cell based immunotherapies. Here, the authors, through a high-throughput screening, identify HSP90 inhibitors as a class of preferred drugs for treatment combination with immunotherapy.
CCL2 induces resistance to the antiproliferative effect of cabazitaxel in prostate cancer cells
Understanding the mechanism of chemoresistance and disease progression in patients with prostate cancer is important for developing novel treatment strategies. In particular, developing resistance to cabazitaxel is a major challenge in patients with docetaxel‐resistant and castration‐resistant prostate cancer (CRPC) because cabazitaxel is often administered as a last resort. However, the mechanism by which cabazitaxel resistance develops is still unclear. C‐C motif chemokine ligands (CCL) were shown to contribute to the castration resistance of prostate cancer cells via an autocrine mechanism. Therefore, we focused on CCL as key factors of chemoresistance in prostate cancer cells. We previously established a cabazitaxel‐resistant cell line, DU145‐TxR/CxR, from a previously established paclitaxel‐resistant cell line, DU145‐TxR. cDNA microarray analysis revealed that the expression of CCL2 was upregulated in both DU145‐TxR and DU145‐TxR/CxR cells compared with DU145 cells. The secreted CCL2 protein level in DU145‐TxR and DU145‐TxR/CxR cells was also higher than in parental DU145 cells. The stimulation of DU145 cells with CCL2 increased the proliferation rate under treatments with cabazitaxel, and a CCR2 (a specific receptor of CCL2) antagonist suppressed the proliferation of DU145‐TxR and DU145‐TxR/CxR cells under treatments of cabazitaxel. The CCL2‐CCR2 axis decreased apoptosis through the inhibition of caspase‐3 and poly(ADP‐ribose) polymerase (PARP). CCL2 is apparently a key contributor to cabazitaxel resistance in prostate cancer cells. Inhibition of the CCL2‐CCR2 axis may be a potential therapeutic strategy against chemoresistant CRPC in combination with cabazitaxel. Cabazitaxel‐resistant cell line DU145‐TxR/CxR cells secreted CCL2, and CCL2 induces resistance to the antiproliferative effect of cabazitaxel in DU145‐TxR/CxR cells in an autocrine manner. Inhibition of the CCL2‐CCR2 axis may be a potential treatment candidate in combination with cabazitaxel.
Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression
The role and characteristics of tumor-associated neutrophils (TAN) in cancer are poorly defined. We have recently shown that TAN can have anti-tumorigenic (N1) or pro-tumorigenic (N2) functions. An interesting unanswered question is how the phenotype of TAN is influenced by the ongoing evolvement of tumor microenvironment. We therefore studied the phenotype and effects of TAN at different time points during tumor progression. We used two models of murine tumor cancer cell lines—Lewis lung carcinoma (LLC) and AB12 (mesothelioma). Neutrophils were studied at early and late stages and compared to each other and to neutrophils from bone marrow/periphery of naïve mice. Although there was no difference in the number of neutrophils entering the tumor, we found that at early stages of tumor development, neutrophils were almost exclusively at the periphery of the tumor. Only at later stages, neutrophils were also found scattered among the tumor cells. We further found that TAN from early tumors are more cytotoxic toward tumor cells and produce higher levels of TNF-α, NO and H 2 O 2 . In established tumors, these functions are down-regulated and TAN acquire a more pro-tumorigenic phenotype. In line with this phenotype, only depletion of neutrophils at later stages of tumor development inhibited tumor growth, possibly due to their central location in the tumor. Our work adds another important layer to the understanding of neutrophils in cancer by further characterizing the changes in TAN during time. Additional research on the functional role of TAN and differences between subsets of TAN is currently underway.
High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program
Systemic metabolic alterations associated with increased consumption of saturated fat and obesity are linked with increased risk of prostate cancer progression and mortality, but the molecular underpinnings of this association are poorly understood. Here, we demonstrate in a murine prostate cancer model, that high-fat diet (HFD) enhances the MYC transcriptional program through metabolic alterations that favour histone H4K20 hypomethylation at the promoter regions of MYC regulated genes, leading to increased cellular proliferation and tumour burden. Saturated fat intake (SFI) is also associated with an enhanced MYC transcriptional signature in prostate cancer patients. The SFI-induced MYC signature independently predicts prostate cancer progression and death. Finally, switching from a high-fat to a low-fat diet, attenuates the MYC transcriptional program in mice. Our findings suggest that in primary prostate cancer, dietary SFI contributes to tumour progression by mimicking MYC over expression, setting the stage for therapeutic approaches involving changes to the diet. Prostate cancer progression may be enhanced by a high-fat diet. Here the authors show that a diet high in saturated fats enhance the MYC-driven transcriptional program, a feature that independently predicts prostate cancer progression and death.
MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation
The TOR (target of rapamycin) kinase limits longevity by poorly understood mechanisms. Rapamycin suppresses the mammalian TORC1 complex, which regulates translation, and extends lifespan in diverse species, including mice. We show that rapamycin selectively blunts the pro-inflammatory phenotype of senescent cells. Cellular senescence suppresses cancer by preventing cell proliferation. However, as senescent cells accumulate with age, the senescence-associated secretory phenotype (SASP) can disrupt tissues and contribute to age-related pathologies, including cancer. MTOR inhibition suppressed the secretion of inflammatory cytokines by senescent cells. Rapamycin reduced IL6 and other cytokine mRNA levels, but selectively suppressed translation of the membrane-bound cytokine IL1A. Reduced IL1A diminished NF-κB transcriptional activity, which controls much of the SASP; exogenous IL1A restored IL6 secretion to rapamycin-treated cells. Importantly, rapamycin suppressed the ability of senescent fibroblasts to stimulate prostate tumour growth in mice. Thus, rapamycin might ameliorate age-related pathologies, including late-life cancer, by suppressing senescence-associated inflammation. Campisi and colleagues show that the MTOR inhibitor rapamycin blocks the senescence-associated secretory phenotype (SASP) by inhibiting translation of IL1A, which prevents senescent fibroblasts from promoting tumour growth.
Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer
Sterol regulatory element-binding proteins (SREBPs) belong to a family of transcription factors that regulate the expression of genes required for the synthesis of fatty acids and cholesterol. Three SREBP isoforms, SREBP1a, SREBP1c, and SREBP2, have been identified in mammalian cells. SREBP1a and SREBP1c are derived from a single gene through the use of alternative transcription start sites. Here we investigated the role of SREBP-mediated lipogenesis in regulating tumor growth and initiation in colon cancer. Knockdown of either SREBP1 or SREBP2 decreased levels of fatty acids as a result of decreased expression of SREBP target genes required for lipid biosynthesis in colon cancer cells. Bioenergetic analysis revealed that silencing SREBP1 or SREBP2 expression reduced the mitochondrial respiration, glycolysis, as well as fatty acid oxidation indicating an alteration in cellular metabolism. Consequently, the rate of cell proliferation and the ability of cancer cells to form tumor spheroids in suspension culture were significantly decreased. Similar results were obtained in colon cancer cells in which the proteolytic activation of SREBP was blocked. Importantly, knockdown of either SREBP1 or SREBP2 inhibited xenograft tumor growth in vivo and decreased the expression of genes associated with cancer stem cells. Taken together, our findings establish the molecular basis of SREBP-dependent metabolic regulation and provide a rationale for targeting lipid biosynthesis as a promising approach in colon cancer treatment.
The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1
Understanding the roles of splicing factors and splicing events during tumorigenesis would open new avenues for targeted therapies. Here we identify an oncofetal splicing factor, MBNL3, which promotes tumorigenesis and indicates poor prognosis of hepatocellular carcinoma patients. MBNL3 knockdown almost completely abolishes hepatocellular carcinoma tumorigenesis. Transcriptomic analysis revealed that MBNL3 induces lncRNA-PXN-AS1 exon 4 inclusion. The transcript lacking exon 4 binds to coding sequences of PXN mRNA, causes dissociation of translation elongation factors from PXN mRNA, and thereby inhibits PXN mRNA translation. In contrast, the transcript containing exon 4 preferentially binds to the 3′ untranslated region of PXN mRNA, protects PXN mRNA from microRNA-24–AGO2 complex-induced degradation, and thereby increases PXN expression. Through inducing exon 4 inclusion, MBNL3 upregulates PXN, which mediates the pro-tumorigenic roles of MBNL3. Collectively, these data demonstrate detailed mechanistic links between an oncofetal splicing factor, a splicing event and tumorigenesis, and establish splicing factors and splicing events as potential therapeutic targets. Yuan et al.  show that the MBNL3 splicing factor promotes alternative splicing of the lncRNA-PXN-AS1 antisense transcript of PXN, leading to the stabilization of PXN mRNA and increasing its protein levels to promote liver cancer growth.