Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
726
result(s) for
"Bacillus anthracis - genetics"
Sort by:
Proposal of a Taxonomic Nomenclature for the Bacillus cereus Group Which Reconciles Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes
by
Kovac, Jasna
,
Carroll, Laura M.
,
Wiedmann, Martin
in
Anthrax
,
Bacillus - classification
,
Bacillus - genetics
2020
Historical species definitions for many prokaryotes, including pathogens, have relied on phenotypic characteristics that are inconsistent with genome evolution. This scenario forces microbiologists and clinicians to face a tradeoff between taxonomic rigor and clinical interpretability. Using the
Bacillus cereus
group as a model, a conceptual framework for the taxonomic delineation of prokaryotes which reconciles genomic definitions of species with clinically and industrially relevant phenotypes is presented. The nomenclatural framework outlined here serves as a model for genomics-based bacterial taxonomy that moves beyond arbitrarily set genomospecies thresholds while maintaining congruence with phenotypes and historically important species names.
The
Bacillus cereus
group comprises numerous closely related species, including bioterrorism agent
B. anthracis
, foodborne pathogen
B. cereus
, and biopesticide
B. thuringiensis
. Differentiating organisms capable of causing illness or death from those used in industry is essential for risk assessment and outbreak preparedness. However, current species definitions facilitate species-phenotype incongruences, particularly when horizontally acquired genes are responsible for a phenotype. Using all publicly available
B. cereus
group genomes (
n
= 2,231), we show that current species definitions lead to overlapping genomospecies clusters, in which 66.2% of genomes belong to multiple genomospecies at a conventional 95 average nucleotide identity (ANI) genomospecies threshold. A genomospecies threshold of ≈92.5 ANI is shown to reflect a natural gap in genome similarity for the
B. cereus
group, and medoid genomes identified at this threshold are shown to yield resolvable genomospecies clusters with minimal overlap (six of 2,231 genomes assigned to multiple genomospecies; 0.269%). We thus propose a nomenclatural framework for the
B. cereus
group which accounts for (i) genomospecies using resolvable genomospecies clusters obtained at ≈92.5 ANI, (ii) established lineages of medical importance using a formal collection of subspecies names, and (iii) heterogeneity of clinically and industrially important phenotypes using a formalized and extended collection of biovar terms. We anticipate that the proposed nomenclature will remain interpretable to clinicians, without sacrificing genomic species definitions, which can in turn aid in pathogen surveillance; early detection of emerging, high-risk genotypes; and outbreak preparedness.
IMPORTANCE
Historical species definitions for many prokaryotes, including pathogens, have relied on phenotypic characteristics that are inconsistent with genome evolution. This scenario forces microbiologists and clinicians to face a tradeoff between taxonomic rigor and clinical interpretability. Using the
Bacillus cereus
group as a model, a conceptual framework for the taxonomic delineation of prokaryotes which reconciles genomic definitions of species with clinically and industrially relevant phenotypes is presented. The nomenclatural framework outlined here serves as a model for genomics-based bacterial taxonomy that moves beyond arbitrarily set genomospecies thresholds while maintaining congruence with phenotypes and historically important species names.
Journal Article
Capsules, Toxins and AtxA as Virulence Factors of Emerging Bacillus cereus Biovar anthracis
by
Couture-Tosi, Evelyne
,
Leendertz, Fabian H.
,
Lander, Angelika
in
Animals
,
Anthrax - microbiology
,
Antigens, Bacterial - genetics
2015
Emerging B. cereus strains that cause anthrax-like disease have been isolated in Cameroon (CA strain) and Côte d'Ivoire (CI strain). These strains are unusual, because their genomic characterisation shows that they belong to the B. cereus species, although they harbour two plasmids, pBCXO1 and pBCXO2, that are highly similar to the pXO1 and pXO2 plasmids of B. anthracis that encode the toxins and the polyglutamate capsule respectively. The virulence factors implicated in the pathogenicity of these B. cereus bv anthracis strains remain to be characterised. We tested their virulence by cutaneous and intranasal delivery in mice and guinea pigs; they were as virulent as wild-type B. anthracis. Unlike as described for pXO2-cured B. anthracis, the CA strain cured of the pBCXO2 plasmid was still highly virulent, showing the existence of other virulence factors. Indeed, these strains concomitantly expressed a hyaluronic acid (HA) capsule and the B. anthracis polyglutamate (PDGA) capsule. The HA capsule was encoded by the hasACB operon on pBCXO1, and its expression was regulated by the global transcription regulator AtxA, which controls anthrax toxins and PDGA capsule in B. anthracis. Thus, the HA and PDGA capsules and toxins were co-regulated by AtxA. We explored the respective effect of the virulence factors on colonisation and dissemination of CA within its host by constructing bioluminescent mutants. Expression of the HA capsule by itself led to local multiplication and, during intranasal infection, to local dissemination to the adjacent brain tissue. Co-expression of either toxins or PDGA capsule with HA capsule enabled systemic dissemination, thus providing a clear evolutionary advantage. Protection against infection by B. cereus bv anthracis required the same vaccination formulation as that used against B. anthracis. Thus, these strains, at the frontier between B. anthracis and B. cereus, provide insight into how the monomorphic B. anthracis may have emerged.
Journal Article
Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins
by
Cordero, Radames J. B.
,
Frases, Susana
,
Rivera, Johanna
in
Animals
,
Anthrax
,
Anthrax - epidemiology
2010
Extracellular vesicle production is a ubiquitous process in Gram-negative bacteria, but little is known about such process in Gram-positive bacteria. We report the isolation of extracellular vesicles from the supernatants of Bacillus anthracis, a Gram-positive bacillus that is a powerful agent for biological warfare. B. anthracis vesicles formed at the outer layer of the bacterial cell had double-membrane spheres and ranged from 50 to 150 nm in diameter. Immunoelectron microscopy with mAbs to protective antigen, lethal factor, edema toxin, and anthrolysin revealed toxin components and anthrolysin in vesicles, with some vesicles containing more than one toxin component. Toxin-containing vesicles were also visualized inside B. anthracis-infected macrophages. ELISA and immunoblot analysis of vesicle preparations confirmed the presence of B. anthracis toxin components. A mAb to protective antigen protected macrophages against vesicles from an anthrolysin-deficient strain, but not against vesicles from Sterne 34F2 and Sterne δT strains, consistent with the notion that vesicles delivered both toxin and anthrolysin to host cells. Vesicles were immunogenic in BALB/c mice, which produced a robust IgM response to toxin components. Furthermore, vesicle-immunized mice lived significantly longer than controls after B. anthracis challenge. Our results indicate that toxin secretion in B. anthracis is, at least, partially vesicle-associated, thus allowing concentrated delivery of toxin components to target host cells, a mechanism that may increase toxin potency. Our observations may have important implications for the design of vaccines, for passive antibody strategies, and provide a previously unexplored system for studying secretory pathways in Gram-positive bacteria.
Journal Article
The Regulation of Exosporium-Related Genes in Bacillus thuringiensis
by
Kao, Guiwei
,
Qu, Ning
,
Peng, Qi
in
631/326/1320
,
631/337/572/2102
,
Bacillus anthracis - genetics
2016
Bacillus anthracis, Bacillus cereus
and
Bacillus thuringiensis
(Bt) are spore-forming members of the
Bacillus cereus
group. Spores of
B. cereus
group species are encircled by exosporium, which is composed of an external hair-like nap and a paracrystalline basal layer. Despite the extensive studies on the structure of the exosporium-related proteins, little is known about the transcription and regulation of exosporium gene expression in the
B. cereus
group. Herein, we studied the regulation of several exosporium-related genes in Bt. A SigK consensus sequence is present upstream of genes encoding hair-like nap proteins (
bclA
and
bclB
), basal layer proteins (
bxpA, bxpB, cotB
and
exsY
) and inosine hydrolase (
iunH
). Mutation of
sigK
decreased the transcriptional activities of all these genes, indicating that the transcription of these genes is controlled by SigK. Furthermore, mutation of
gerE
decreased the transcriptional activities of
bclB, bxpB, cotB
and
iunH
but increased the expression of
bxpA
and GerE binds to the promoters of
bclB, bxpB, cotB, bxpA
and
iunH
. These results suggest that GerE directly regulates the transcription of these genes, increasing the expression of
bclB, bxpB, cotB
and
iunH
and decreasing that of
bxpA
. These findings provide insight into the exosporium assembly process at the transcriptional level.
Journal Article
Bacteriologic and Genomic Investigation of Bacillus anthracis Isolated from World War II Site, China
2024
Records suggest Bacillus anthracis was used in biowarfare during World War II, but evidence remains limited. We isolated B. anthracis from soil at the remains of a World War II-era laboratory in China. Phenotypic and genomic analyses confirmed the finding, highlighting the value of microbial forensics in biothreat investigation.
Journal Article
Endogenous Nitric Oxide Protects Bacteria Against a Wide Spectrum of Antibiotics
by
Starodubtseva, Marina
,
Nudler, Evgeny
,
Gusarov, Ivan
in
Acriflavine - metabolism
,
Acriflavine - pharmacology
,
Anti-Bacterial Agents - metabolism
2009
Bacterial nitric oxide synthases (bNOS) are present in many Gram-positive species and have been demonstrated to synthesize NO from arginine in vitro and in vivo. However, the physiological role of bNOS remains largely unknown. We show that NO generated by bNOS increases the resistance of bacteria to a broad spectrum of antibiotics, enabling the bacteria to survive and share habitats with antibiotic-producing microorganisms. NO-mediated resistance is achieved through both the chemical modification of toxic compounds and the alleviation of the oxidative stress imposed by many antibiotics. Our results suggest that the inhibition of NOS activity may increase the effectiveness of antimicrobial therapy.
Journal Article
Insights from Bacillus anthracis strains isolated from permafrost in the tundra zone of Russia
2019
This article describes Bacillus anthracis strains isolated during an outbreak of anthrax on the Yamal Peninsula in the summer of 2016 and independently in Yakutia in 2015. A common feature of these strains is their conservation in permafrost, from which they were extracted either due to the thawing of permafrost (Yamal strains) or as the result of paleontological excavations (Yakut strains). All strains isolated on the Yamal share an identical genotype belonging to lineage B.Br.001/002, pointing to a common source of infection in a territory over 250 km in length. In contrast, during the excavations in Yakutia, three genetically different strains were recovered from a single pit. One strain belongs to B.Br.001/002, and whole genome sequence analysis showed that it is most closely related to the Yamal strains in spite of the remoteness of Yamal from Yakutia. The two other strains contribute to two different branches of A.Br.008/011, one of the remarkable polytomies described so far in the B. anthracis species. The geographic distribution of the strains belonging to A.Br.008/011 is suggesting that the polytomy emerged in the thirteenth century, in combination with the constitution of a unified Mongol empire extending from China to Eastern Europe. We propose an evolutionary model for B. anthracis recent evolution in which the B lineage spread throughout Eurasia and was subsequently replaced by the A lineage except in some geographically isolated areas.
Journal Article
Direct Proteolytic Cleavage of NLRP1B Is Necessary and Sufficient for Inflammasome Activation by Anthrax Lethal Factor
by
Vance, Russell E.
,
Chavarría-Smith, Joseph
in
Animals
,
Anthrax
,
Antigens, Bacterial - genetics
2013
Inflammasomes are multimeric protein complexes that respond to infection by recruitment and activation of the Caspase-1 (CASP1) protease. Activated CASP1 initiates immune defense by processing inflammatory cytokines and by causing a rapid and lytic cell death called pyroptosis. Inflammasome formation is orchestrated by members of the nucleotide-binding domain and leucine-rich repeat (NLR) or AIM2-like receptor (ALR) protein families. Certain NLRs and ALRs have been shown to function as direct receptors for specific microbial ligands, such as flagellin or DNA, but the molecular mechanism responsible for activation of most NLRs is still poorly understood. Here we determine the mechanism of activation of the NLRP1B inflammasome in mice. NLRP1B, and its ortholog in rats, is activated by the lethal factor (LF) protease that is a key virulence factor secreted by Bacillus anthracis, the causative agent of anthrax. LF was recently shown to cleave mouse and rat NLRP1 directly. However, it is unclear if cleavage is sufficient for NLRP1 activation. Indeed, other LF-induced cellular events have been suggested to play a role in NLRP1B activation. Surprisingly, we show that direct cleavage of NLRP1B is sufficient to induce inflammasome activation in the absence of LF. Our results therefore rule out the need for other LF-dependent cellular effects in activation of NLRP1B. We therefore propose that NLRP1 functions primarily as a sensor of protease activity and thus could conceivably detect a broader spectrum of pathogens than just B. anthracis. By adding proteolytic cleavage to the previously established ligand-receptor mechanism of NLR activation, our results illustrate the remarkable flexibility with which the NLR architecture can be deployed for the purpose of pathogen-detection and host defense.
Journal Article
Evaluation of Oxford Nanopore’s MinION Sequencing Device for Microbial Whole Genome Sequencing Applications
by
Schmidt, Lisa
,
Urfano, Chantel J.
,
Mulvey, Michael R.
in
45/23
,
631/1647/2234
,
631/1647/514/2254
2018
The MinION sequencer (Oxford Nanopore Technologies) is a paradigm shifting device allowing rapid, real time long read sequencing of nucleic acids. Yet external benchmarking of this technologies’ capabilities has not been extensively reported, nor has thorough evaluation of its utility for field-based analysis with sub-optimal sample types been described. The aim of this study was to evaluate the capability of the MinION sequencer for bacterial genomic and metagenomic applications, with specific emphasis placed on the quality, yield, and accuracy of generated sequence data. Two independent laboratories at the National Microbiology Laboratory (Public Health Agency of Canada), sequenced a set of microbes in replicate, using the currently available flowcells, sequencing chemistries, and software available at the time of the experiment. Overall sequencing yield and quality improved through the course of this set of experiments. Sequencing alignment accuracy was high reaching 97% for all 2D experiments, though was slightly lower for 1D sequencing (94%). 1D sequencing provided much longer sequences than 2D. Both sequencing chemistries performed equally well in constructing genomic assemblies. There was evidence of barcode cross-over using both the native and PCR barcoding methods. Despite the sub-optimal nature of samples sequenced in the field, sequences attributable to
B. anthracis
the target organism used in this scenario, could none-the-less be detected. Together, this report showcases the rapid advancement in this technology and its utility in the context of genomic sequencing of microbial isolates of importance to public health.
Journal Article
A CRISPR/Cas12a-based DNAzyme visualization system for rapid, non-electrically dependent detection of Bacillus anthracis
2022
As next-generation pathogen detection methods, CRISPR-Cas-based detection methods can perform single-nucleotide polymorphism (SNP) level detection with high sensitivity and good specificity. They do not require any particular equipment, which opens up new possibilities for the accurate detection and identification of Bacillus anthracis. In this study, we developed a complete detection system for B. anthracis based on Cas12a. We used two chromosomally located SNP targets and two plasmid targets to identify B. anthracis with high accuracy. The CR5 target is completely new. The entire detection process can be completed within 90 min without electrical power and with single-copy level sensitivity. We also developed an unaided-eye visualization system based on G4-DNAzyme for use with our CRISPR-Cas12a detection system. This visualization system has good prospects for deployment in field-based point-of-care detection. We used the antisense nucleic acid CatG4R as the detection probe, which showed stronger resistance to interference from components of the solution. CatG4R can also be designed as an RNA molecule for adaptation to Cas13a detection, thereby broadening the scope of the detection system.
Journal Article