Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
365
result(s) for
"Bacillus thuringiensis - pathogenicity"
Sort by:
Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism
by
Tettamanti, Gianluca
,
Casartelli, Morena
,
Franzetti, Eleonora
in
Agricultural Sciences
,
Animals
,
Bacillus thuringiensis
2016
Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host.
Journal Article
Field-Evolved Resistance to Bt Maize by Western Corn Rootworm
by
Gassmann, Aaron J.
,
Dunbar, Mike W.
,
Keweshan, Ryan S.
in
Agriculture
,
Agrochemicals
,
Animals
2011
Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).
We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins.
This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary.
Journal Article
Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis
2018
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Journal Article
Scavenger receptor-C acts as a receptor for Bacillus thuringiensis vegetative insecticidal protein Vip3Aa and mediates the internalization of Vip3Aa via endocytosis
2018
The vegetative insecticidal proteins (Vip), secreted by many Bacillus thuringiensis strains during their vegetative growth stage, are genetically distinct from known insecticidal crystal proteins (ICPs) and represent the second-generation insecticidal toxins. Compared with ICPs, the insecticidal mechanisms of Vip toxins are poorly understood. In particular, there has been no report of a definite receptor of Vip toxins to date. In the present study, we identified the scavenger receptor class C like protein (Sf-SR-C) from the Spodoptera frugiperda (Sf9) cells membrane proteins that bind to the biotin labeled Vip3Aa, via the affinity magnetic bead method coupled with HPLC-MS/MS. We then certified Vip3Aa protoxin could interact with Sf-SR-C in vitro and ex vivo. In addition, downregulation of SR-C expression in Sf9 cells and Spodoptera exigua larvae midgut reduced the toxicity of Vip3Aa to them. Coincidently, heterologous expression of Sf-SR-C in transgenic Drosophila midgut significantly enhanced the virulence of Vip3Aa to the Drosophila larvae. Moreover, the complement control protein domain and MAM domain of Sf-SR-C are involved in the interaction with Vip3Aa protoxin. Furthermore, endocytosis of Vip3Aa mediated by Sf-SR-C correlates with its insecticidal activity. Our results confirmed for the first time that Sf-SR-C acts as a receptor for Vip3Aa protoxin and provides an insight into the mode of action of Vip3Aa that will significantly facilitate the study of its insecticidal mechanism and application.
Journal Article
Experimental evolution of immunological specificity
by
Yang, Wentao
,
Peuß, Robert
,
Schulenburg, Hinrich
in
Adaptive systems
,
Animals
,
Bacillus thuringiensis - pathogenicity
2019
Memory and specificity are hallmarks of the adaptive immune system. Contrary to prior belief, innate immune systems can also provide forms of immune memory, such as immune priming in invertebrates and trained immunity in vertebrates. Immune priming can even be specific but differs remarkably in cellular and molecular functionality from the well-studied adaptive immune system of vertebrates. To date, it is unknown whether and how the level of specificity in immune priming can adapt during evolution in response to natural selection. We tested the evolution of priming specificity in an invertebrate model, the beetle Tribolium castaneum . Using controlled evolution experiments, we selected beetles for either specific or unspecific immune priming toward the bacteria Pseudomonas fluorescens, Lactococcus lactis , and 4 strains of the entomopathogen Bacillus thuringiensis . After 14 generations of host selection, specificity of priming was not universally higher in the lines selected for specificity, but rather depended on the bacterium used for priming and challenge. The insect pathogen B. thuringiensis induced the strongest priming effect. Differences between the evolved populations were mirrored in the transcriptomic response, revealing involvement of immune, metabolic, and transcription-modifying genes. Finally, we demonstrate that the induction strength of a set of differentially expressed immune genes predicts the survival probability of the evolved lines upon infection. We conclude that high specificity of immune priming can evolve rapidly for certain bacteria, most likely due to changes in the regulation of immune genes.
Journal Article
Experimental evolution of a pathogen confronted with innate immune memory increases variation in virulence
by
Korša, Ana
,
Schulz, Nora K. E.
,
Anaya-Rojas, Jaime M.
in
Adaptive immunity
,
Analysis
,
Animals
2025
Understanding the drivers and mechanisms of virulence evolution is still a major goal of evolutionary biologists and epidemiologists. Theory predicts that the way virulence evolves depends on the balance between the benefits and costs it provides to pathogen fitness. Additionally, host responses to infections, such as resistance or tolerance, play a critical role in shaping virulence evolution. But, while the evolution of pathogens has been traditionally studied under the selection pressure of host adaptive immunity, less is known about their evolution when confronted to simpler and less effective forms of immunity such as immune priming. In this study, we used a well-established insect model for immune priming – red flour beetles and their bacterial pathogen Bacillus thuringiensis tenebrionis – to test how this form of innate immune memory drives the pathogen evolution. Through controlled experimental evolution of the pathogen in primed versus non-primed hosts, we found no change in average virulence after eight selection cycles in primed host. Nonetheless, we observed a notable rise in the variability of virulence, defined as the ability to kill hosts, among independent pathogen lines that evolved in primed hosts, and the bacteria were unable to develop resistance to host priming. Whole genome sequencing revealed increased activity in the bacterial mobilome (prophages and plasmids). Expression of the Cry toxin – a well-known virulence factor – was linked to evolved differences in copy number variation of the cry -carrying plasmid, though this did not correlate directly with virulence. These findings highlight that innate immune memory can drive variability in pathogen traits, which may favor adaptation to variable environments. This underscores the need to consider pathogen evolution in response to innate immune memory when applying these mechanisms in medicine, aquaculture, pest control, and insect mass production.
Journal Article
Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil
by
Horikoshi, Renato Jun
,
Carvalho, Renato Assis
,
Head, Graham P.
in
Agricultural economics
,
Agricultural production
,
Agriculture
2015
Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105, indicates that current Cry1-based maize hybrids face a challenge in managing S. frugiperda in Brazil and highlights the importance of effective insect resistance management for these technologies.
Journal Article
Possible interference of Bacillus thuringiensis in the survival and behavior of Africanized honey bees (Apis mellifera)
by
de Souza Vismara, Edgar
,
Sampaio, Amanda Roberta
,
Potrich, Michele
in
631/601/1466
,
704/158/2458
,
704/172/4081
2021
Bacillus thuringiensis
(Bt), an entomopathogenic bacterium, has been used as bioinsecticides for insect pest control worldwide. Consequently, the objective of this work was to evaluate the possible effects of commercial formulations of Bt products, Dipel and Xentari, on the survival and behavior of Africanized honey bees (
Apis mellifera
). Bioassays were performed on foragers and newly emerged (24-h-old) bees that received the products mixed in the food. Their survival and behavior were evaluated through the vertical displacement tests and the walk test, analyzed using software Bee-Move. Then, histological analysis of the mesenterium was performed. As control treatment was used sterile water. The honey bees’ survival was evaluated for between 1 and 144 h. No interference of
B. thuringiensis
, Dipel and Xentari, in the survival of Africanized honey bees were found. Only Xentari interfered with vertical displacement behavior of newly emerged (24-h-old) bees. Both the products tested were selective and safe for
A. mellifera
.
Journal Article
Characterization of Bacillus thuringiensis isolates by their insecticidal activity and their production of Cry and Vip3 proteins
by
Güneş, Hatice
,
Gomis-Cebolla, Joaquín
,
Şahin, Burcu
in
Agriculture
,
Animals
,
Bacillus thuringiensis
2018
Bacillus thuringiensis (Bt) constitutes the active ingredient of many successful bioinsecticides used in agriculture. In the present study, the genetic diversity and toxicity of Bt isolates was investigated by characterization of native isolates originating from soil, fig leaves and fruits from a Turkish collection. Among a total of 80 Bt isolates, 18 of them were found carrying a vip3 gene (in 23% of total), which were further selected. Insecticidal activity of spore/crystal mixtures and their supernatants showed that some of the Bt isolates had significantly more toxicity against some lepidopteran species than the HD1 reference strain. Five isolates were analyzed by LC-MS/MS to determine the Cry protein composition of their crystals. The results identified the Cry1Ac protein and a Cry2A-type protein in all isolates, Cry1Ea in 3 of them and Cry1Aa in one. The sequence analysis of the new vip3 genes showed that they had a high similarity to either vip3Aa, vip3Af or vip3Ag (94-100%). The vip3Aa gene of the 6A Bt isolate was cloned and sequenced. The protein was named Vip3Aa65 by the Bacillus thuringiensis Nomenclature Committee. The expressed and purified Vip3Aa65 protein was tested against five lepidopteran species and its toxicity compared to that of a reference protein (Vip3Aa16). Both proteins had similar toxicity against Grapholita molesta and Helicoverpa armigera, whereas Vip3Aa65 was less active than Vip3Aa16 against three species from the Spodoptera genus. A tetrameric structure of the Vip3Aa65 protein was detected by gel filtration chromatography. The study revealed some isolates with high insecticidal activity which can be considered promising candidates to be used in pest control.
Journal Article
Host–Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes
by
Papkou, Andrei
,
Schulte, Rebecca D.
,
Prahl, Swantje
in
Adaptation
,
Animals
,
Bacillus thuringiensis - genetics
2015
Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system.
Journal Article