Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,121 result(s) for "Backfill"
Sort by:
Classification and Design of Backfill Coal Mining Systems Based on Typical Engineering Cases
Backfill coal mining technology has drawn widespread attention due to its benefits of “controlling surface deformation and subsidence, reducing mining-induced disturbance in the stope, and recycling solid mine wastes”. However, the backfill coal mining technology is still progressing slowly in China. The geological environment of China’s mining areas is complex and highly diversified, and backfill coal mining is expected to fulfill different goals in a wide range of engineering scenarios. These facts explain the poor reproducibility of backfill coal mining projects. This study reviews the existing backfill coal mining systems in China. Based on findings from a survey of engineering cases, we summarize five types of new backfill coal mining methods classified by deployment style; namely, borehole grouting backfill, roadway backfill, borehole–roadway backfill, in situ backfill, and roadway-in-situ backfill. A total of 15 backfill coal mining methods falling into the above five categories are described. An engineering design workflow for backfill coal mining consisting of five steps is proposed; namely, identifying the targets of backfill, analyzing the feasibility of deploying the backfill system, comparing the engineering quantities of different engineering schemes, estimating the economic efficiency of backfill, and backfill performance tracking and monitoring. Real cases of backfill engineering design are analyzed to inform the fast and reasonable design of backfill strategy for specific working faces in certain coal mines.
Backfill Technologies and Designs for Deep-Level Sylvinite Mining
To reduce intensity of deformation in rocks prone to buckling and plastic deformation, and sensitive to geo- and gas-dynamic phenomena, the authors propose a consolidated backfill technology using salt waste and processing reuse brine at the consumption limits of water-yielding capacity. A set of laboratory tests is carried out to find backfill mixtures adaptable to deep-level potash mining with estimation of deformation characteristics and strength properties of potash salt rocks. New principles and technologies of deep-level sylvinite extraction and backfill material transport by creating such geotechnical structures in stopes which ensure formation of consolidated backfill mass with the mined-out stope space factor close to one. This approach can enhance mine efficiency owing to increased extraction of sylvinite from rib and safety pillars.
Surface subsidence control theory and application to backfill coal mining technology
Solid backfill technology, which can achieve precise control of surface subsidence, has become the primary method used to extract “under three” coal resources (under railways, buildings, and water bodies), especially under buildings. This paper proposes a probability integration model for surface subsidence prediction based on the equivalent mining height (EMH) theory and describes the basic control principle for surface subsidence, i.e., guaranteeing a maximum security standard for surface buildings, based on the maximum EMH, by controlling the backfill body’s compression ratio (BBCR). Based on this control principle, an engineering design process for solid backfill mining under buildings was established, and an engineering design method that employs the BBCR as the critical control indicator and a method for determining the key parameters in subsidence prediction are proposed. In applications at the Huayuan coal mine in China, the measured subsidence values were less than predicted; the measured BBCR was controlled at a level higher than 90 %, which was greater than in the theoretical design; the surface subsidence of buildings was controlled at mining level I. The results of application of the methods proposed in this paper show that the basic principles of controlling the BBCR and maximum EMH provide clear guidance for surface subsidence control in solid backfill mining engineering practice.