Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
71
result(s) for
"Backprojections"
Sort by:
Interpolation Methods with Phase Control for Backprojection of Complex-Valued SAR Data
2022
Time-domain backprojection algorithms are widely used in state-of-the-art synthetic aperture radar (SAR) imaging systems that are designed for applications where motion error compensation is required. These algorithms include an interpolation procedure, under which an unknown SAR range-compressed data parameter is estimated based on complex-valued SAR data samples and backprojected into a defined image plane. However, the phase of complex-valued SAR parameters estimated based on existing interpolators does not contain correct information about the range distance between the SAR imaging system and the given point of space in a defined image plane, which affects the quality of reconstructed SAR scenes. Thus, a phase-control procedure is required. This paper introduces extensions of existing linear, cubic, and sinc interpolation algorithms to interpolate complex-valued SAR data, where the phase of the interpolated SAR data value is controlled through the assigned a priori known range time that is needed for a signal to reach the given point of the defined image plane and return back. The efficiency of the extended algorithms is tested at the Nyquist rate on simulated and real data at THz frequencies and compared with existing algorithms. In comparison to the widely used nearest-neighbor interpolation algorithm, the proposed extended algorithms are beneficial from the lower computational complexity perspective, which is directly related to the offering of smaller memory requirements for SAR image reconstruction at THz frequencies.
Journal Article
Tremor asperities in the transition zone control evolution of slow earthquakes
by
Vidale, John E.
,
Ghosh, Abhijit
,
Creager, Kenneth C.
in
array of arrays
,
Cascadia subduction zone
,
Continental dynamics
2012
Slow earthquakes, characterized by slow slip and associated seismic radiation called non‐volcanic tremor, have been observed in major subduction zones worldwide. They constitute an important mode of stress release for the fault's transition zone, which lies directly downdip of the locked segment, the nucleation zone of large damaging earthquakes. However, the depth of tremor in Cascadia, and the factors governing tremor generation and rupture propagation during slow quakes remain enigmatic. Here, we develop a novel multibeam‐backprojection (MBBP) method to detect and locate tremor using multiple mini seismic arrays. We apply this technique to image tremor activity during an entire ETS‐cycle including a large episodic tremor and slip (ETS) event in Cascadia with unprecedented resolution. Our results suggest that the majority of the tremor is occurring near the plate interface. We observe strongly heterogeneous tremor distribution with patches in the transition zone that experience repeated tremor episodes and produce most of the tremor. The patches, tens of kilometers in dimension, behave like asperities on the fault plane. During the large ETS event, rupture propagation velocity varies at least by a factor of five, and seems to be modulated by these tremor asperities. These observations support a model in which the transition zone is heterogeneous and consists of patches of asperities with surrounding regions slipping aseismically. The asperities fail quasi‐periodically releasing stress and appear to regulate rupture propagation and tremor generation during slow earthquakes. This study presents new observations revealing the tectonic characteristics of the transition zone controlling the generation and evolution of slow earthquakes. Key Points New multiple seismic array technique gives better tremor detection and location Majority of the tremor in Cascadia is located near the plate interface Tremor asperities control tremor generation and rupture propagation
Journal Article
Architecture Exploration of a Backprojection Algorithm for Real-Time Video SAR
by
Ban, Inmo
,
Lee, Myeongjin
,
Lee, Wookyung
in
Algorithms
,
backprojection
,
Field programmable gate arrays
2021
This paper explores novel architectures for fast backprojection based video synthetic aperture radar (BP-VISAR) with multiple GPUs. The video SAR frame rate is analyzed for non-overlapped and overlapped aperture modes. For the parallelization of the backprojection process, a processing data unit is defined as the phase history data or range profile data from partial synthetic-apertures divided from the full resolution target data. Considering whether full-aperture processing is performed and range compression or backprojection are parallelized on a GPU basis, we propose six distinct architectures, each having a single-stream pipeline with a single GPU. The performance of these architectures is evaluated in both non-overlapped and overlapped modes. The efficiency of the BP-VISAR architecture with sub-aperture processing in the overlapped mode is accelerated further by filling the processing gap from the idling GPU resources with multi-stream based backprojection on multiple GPUs. The frame rate of the proposed BP-VISAR architecture with sub-aperture processing is scalable with the number of GPU devices for large pixel resolution. It can generate 4096 × 4096 video SAR frames of 0.5 m cross-range resolution in 23.0 Hz on a single GPU and 73.5 Hz on quad GPUs.
Journal Article
Resolving rupture processes of great earthquakes: Reviews and perspective from fast response to joint inversion
by
Zhao, Li
,
Yue, Han
,
Ge, Zengxi
in
Data analysis
,
Dynamic inversion
,
Earth and Environmental Science
2020
Resolving rupture processes of great earthquakes has fundamental importance to the study of earthquake physics, rupture dynamics, fault zone structure, and evolving processes. It also plays an essential role in earthquake hazard estimation, emergency response and seismic hazard mitigation. This paper reviews the major progress of the earthquake rupture process studies in the last decades, with an emphasize on the research directions of the department geophysics of Peking University including real-time response, back-projection techniques, geodetic data analysis, joint inversion and inversion in complex earth medium. We discussed the advantages and limitations of tradition methods; proposed a systematic and integrated approach from fast-response to detailed study. We also raised perspectives of using source models for ground motion prediction and the possibility of full-dynamic inversion.
Journal Article
Fast Factorized Backprojection Algorithm in Orthogonal Elliptical Coordinate System for Ocean Scenes Imaging Using Geosynchronous Spaceborne–Airborne VHF UWB Bistatic SAR
2023
Geosynchronous (GEO) spaceborne–airborne very high-frequency ultra-wideband bistatic synthetic aperture radar (VHF UWB BiSAR) can conduct high-resolution and wide-swath imaging for ocean scenes. However, GEO spaceborne–airborne VHF UWB BiSAR imaging faces some challenges such as the geometric configuration, huge amount of echo data, serious range–azimuth coupling, large spatial variance, and complex motion error, which increases the difficulty of the high-efficiency and high-precision imaging. In this paper, we present an improved bistatic fast factorization backprojection (FFBP) algorithm for ocean scene imaging using the GEO satellite-unmanned aerial vehicle (GEO-UAV) VHF UWB BiSAR, which can solve the above issues with high efficiency and high precision. This method reconstructs the subimages in the orthogonal elliptical polar (OEP) coordinate system based on the GEO satellite and UAV trajectories as well as the location of the imaged scene, which can further reduce the computational burden. First, the imaging geometry and signal model of the GEO-UAV VHF UWB BiSAR are established, and the construction of the OEP coordinate system and the subaperture imaging method are proposed. Moreover, the Nyquist sampling requirements for the subimages in the OEP coordinate system are derived from the range error perspective, which can offer a near-optimum tradeoff between precision and efficiency. In addition, the superiority of the OEP coordinate system is analyzed, which demonstrates that the angular dimensional sampling rate of the subimages is significantly reduced. Finally, the implementation processes and computational burden of the proposed algorithm are provided, and the speed-up factor of the proposed FFBP algorithm compared with the BP algorithm is derived and discussed. Experimental results of ideal point targets and natural ocean scenes demonstrate the correctness and effectiveness of the proposed algorithm, which can achieve near-optimal imaging performance with a low computational burden.
Journal Article
Ku-Band SAR-Drone System and Methodology for Repeat-Pass Interferometry
by
Centolanza, Giuseppe
,
Masalias, Gerard
,
Makhoul, Eduard
in
Accuracy
,
airborne repeat-pass interferometry
,
Algorithms
2024
In recent years, drone-based Synthetic Aperture Radar (SAR) systems have emerged as flexible and cost-efficient solutions for detecting changes in the Earth’s surface, retrieving topographic data, or detecting ground displacement processes in localized areas, among other applications. These systems offer a unique combination of short and versatile revisit times and flexible acquisition geometries that are not achievable with space-borne, airborne, or ground-based SAR sensors. However, due to platform limitations and flight stability issues, they also present significant challenges regarding instrument design and data processing, particularly when generating interferometric repeat-pass datasets. This paper demonstrates the feasibility of repeat-pass interferometry using a Ku-band drone-based SAR system. The system integrates a dual-channel Ku-band Frequency Modulated Continuous Wave (FMCW) radar with cross-track single-pass interferometric capabilities, mounted on a drone platform. The proposed repeat-pass interferometric processing chain leverages an accurate Digital Elevation Model (DEM), generated from the single-pass interferograms, to precisely coregister the entire stack of acquisitions, thereby producing repeat-pass interferograms free from residual motion errors. The results underscore the potential of this system and the processing chain proposed for generating multi-temporal repeat-pass stacks suitable for repeat-pass applications.
Journal Article
Coherent Dynamic Clutter Suppression in Structural Health Monitoring via the Image Plane Technique
2025
In this work, a radar imagery-based signal processing technique to eliminate dynamic clutter interference in Structural Health Monitoring (SHM) is proposed. This can be considered an application of a joint communication and sensing telecommunication infrastructure, leveraging a base-station as ground-based radar. The dynamic clutter is considered to be a fast moving road user, such as car, truck, or moped. The proposed technique is suitable in case of a dynamic clutter, such that its Doppler contribute alias and falls over the 0 Hz component. In those cases, a standard low-pass filter is not a viable option. Indeed, an excessively shallow low-pass filter preserves the dynamic clutter contribution, while an excessively narrow low-pass filter deletes the displacement information and also preserves the dynamic clutter. The proposed approach leverages the Time Domain Backprojection (TDBP), a well-known technique to produce radar imagery, to transfer the dynamic clutter from the data domain to an image plane, where the dynamic clutter is maximally compressed. Consequently, the dynamic clutter can be more effectively suppressed than in the range-Doppler domain. The dynamic clutter cancellation is performed by coherent subtraction. Throughout this work, a numerical simulation is conducted. The simulation results show consistency with the ground truth. A further validation is performed using real-world data acquired in the C-band by Huawei Technologies. Corner reflectors are placed on an infrastructure, in particular a bridge, to perform the measurements. Here, two case studies are proposed: a bus and a truck. The validation shows consistency with the ground truth, providing a degree of improvement within respect to the corrupted displacement on the mean error and its variance. As a by-product of the algorithm, there is the capability to produce high-resolution imagery of moving targets.
Journal Article
Residual Motion Error Correction with Backprojection Multisquint Algorithm for Airborne Synthetic Aperture Radar Interferometry
2019
For airborne interferometric synthetic aperture radar (InSAR) data processing, it is essential to achieve precise motion compensation to obtain high-quality digital elevation models (DEMs). In this paper, a novel InSAR motion compensation method is developed, which combines the backprojection (BP) focusing and the multisquint (MSQ) technique. The algorithm is two-fold. For SAR image focusing, BP algorithm is applied to fully use the navigation information. Additionally, an explicit mathematical expression of residual motion error (RME) in the BP image is derived, which paves a way to integrating the MSQ algorithm in the azimuth spatial wavenumber domain for a refined RME correction. It is revealed that the proposed backprojection multisquint (BP-MSQ) algorithm exploits the motion error correction advantages of BP and MSQ simultaneously, which leads to significant improvements of InSAR image quality. Simulation and real data experiments are employed to illustrate the effectiveness of the proposed algorithm.
Journal Article
An Efficient BP Algorithm Based on TSU-ICSI Combined with GPU Parallel Computing
by
Song, Shujie
,
Qiu, Xiaolan
,
Li, Ziya
in
Algorithms
,
Artificial intelligence
,
backprojection algorithm (BPA)
2023
High resolution remains a primary goal in the advancement of synthetic aperture radar (SAR) technology. The backprojection (BP) algorithm, which does not introduce any approximation throughout the imaging process, is broadly applicable and effectively meets the demands for high-resolution imaging. Nonetheless, the BP algorithm necessitates substantial interpolation during point-by-point processing, and the precision and effectiveness of current interpolation methods limit the imaging performance of the BP algorithm. This paper proposes a TSU-ICSI (Time-shift Upsampling-Improved Cubic Spline Interpolation) interpolation method that integrates time-shift upsampling with improved cubic spline interpolation. This method is applied to the BP algorithm and presents an efficient implementation method in conjunction with the GPU architecture. TSU-ICSI not only maintains the accuracy of BP imaging processing but also significantly boosts performance. The effectiveness of the BP algorithm based on TSU-ICSI is confirmed through simulation experiments and by processing measured data collected from both airborne SAR and spaceborne SAR.
Journal Article
Through-Wall Imaging Using Low-Cost Frequency-Modulated Continuous Wave Radar Sensors
2024
Many fields of human activity benefit from the ability to create images of obscured objects placed behind walls and to map their displacement in a noninvasive way. Usually, imaging devices like Synthetic Aperture Radars (SARs) and Ground-Penetrating Radars (GPRs) use expensive dedicated electronics which results in prohibitive prices. This paper presents the experimental implementation and the results obtained from an imaging system capable of performing SAR imaging and interferometric displacement mapping of targets located behind walls, as well as 3D GPR imaging using a low-cost general-purpose radar sensor. The proposed solution uses for the RF section of the system a K-band microwave radar sensor module implementing Frequency-Modulated Continuous Wave (FMCW) operation. The low-cost sensor was originally intended for simple presence detection and ranging for domestic applications. The proposed system was tested in several scenarios and proved to operate as intended for a fraction of the cost of a commercial imaging device. In one scenario, it was able to detect and locate a 15 cm-diameter fire-extinguisher located at a distance of 3.5 m from the scanning system and 1.6 m behind a 3 cm-thick MDF (medium-density fiberboard) wall with cm-level accuracy. In a second test, the proposed system was used to perform interferometric displacement measurements, and it was capable of determining the displacement of a metal case with sub-millimeter accuracy. In a third experiment, the system was used to construct a 3D image of the inside of a wood table with cm-level resolution.
Journal Article