Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
88
result(s) for
"Bacterial Outer Membrane Proteins - antagonists "
Sort by:
A new antibiotic selectively kills Gram-negative pathogens
2019
The current need for novel antibiotics is especially acute for drug-resistant Gram-negative pathogens
1
,
2
. These microorganisms have a highly restrictive permeability barrier, which limits the penetration of most compounds
3
,
4
. As a result, the last class of antibiotics that acted against Gram-negative bacteria was developed in the 1960s
2
. We reason that useful compounds can be found in bacteria that share similar requirements for antibiotics with humans, and focus on
Photorhabdus
symbionts of entomopathogenic nematode microbiomes. Here we report a new antibiotic that we name darobactin, which was obtained using a screen of
Photorhabdus
isolates. Darobactin is coded by a silent operon with little production under laboratory conditions, and is ribosomally synthesized. Darobactin has an unusual structure with two fused rings that form post-translationally. The compound is active against important Gram-negative pathogens both in vitro and in animal models of infection. Mutants that are resistant to darobactin map to BamA, an essential chaperone and translocator that folds outer membrane proteins. Our study suggests that bacterial symbionts of animals contain antibiotics that are particularly suitable for development into therapeutics.
Bacterial symbionts of animals may contain antibiotics that are particularly suitable for development into therapeutics; one such compound, darobactin, is active against important Gram-negative pathogens both in vitro and in animal models of infection.
Journal Article
A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier
by
Si, Qian
,
Roemer, Terry
,
Bodea, Smaranda
in
Anti-Bacterial Agents - pharmacology
,
Antibacterial agents
,
Antiinfectives and antibacterials
2019
The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the β-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K
. BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K. Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.
Journal Article
Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal
by
Garcia, Natalie K.
,
Wecksler, Aaron T.
,
Payandeh, Jian
in
Anti-Bacterial Agents - pharmacology
,
Antibiotics
,
Antibodies, Bacterial - pharmacology
2018
The folding and insertion of integral β-barrel membrane proteins into the outer membrane of Gram-negative bacteria is required for viability and bacterial pathogenesis. Unfortunately, the lack of selective and potent modulators to dissect β-barrel folding in vivo has hampered our understanding of this fundamental biological process. Here, we characterize amonoclonal antibody that selectively inhibits an essential component of the Escherichia coli β-barrel assembly machine, BamA. In the absence of complement or other immune factors, the unmodified antibody MAB1 demonstrates bactericidal activity against an E. coli strain with truncated LPS. Direct binding of MAB1 to an extracellular BamA epitope inhibits its β-barrel folding activity, induces periplasmic stress, disrupts outer membrane integrity, and kills bacteria. Notably, resistance to MAB1-mediated killing reveals a link between outermembrane fluidity and protein folding by BamA in vivo, underscoring the utility of this antibody for studying β-barrel membrane protein folding within a living cell. Identification of this BamA antagonist highlights the potential for new mechanisms of antibiotics to inhibit Gram-negative bacterial growth by targeting extracellular epitopes.
Journal Article
The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase
2021
Antibiotics that target Gram-negative bacteria in new ways are needed to resolve the antimicrobial resistance crisis
1
–
3
. Gram-negative bacteria are protected by an additional outer membrane, rendering proteins on the cell surface attractive drug targets
4
,
5
. The natural compound darobactin targets the bacterial insertase BamA
6
—the central unit of the essential BAM complex, which facilitates the folding and insertion of outer membrane proteins
7
–
13
. BamA lacks a typical catalytic centre, and it is not obvious how a small molecule such as darobactin might inhibit its function. Here we resolve the mode of action of darobactin at the atomic level using a combination of cryo-electron microscopy, X-ray crystallography, native mass spectrometry, in vivo experiments and molecular dynamics simulations. Two cyclizations pre-organize the darobactin peptide in a rigid β-strand conformation. This creates a mimic of the recognition signal of native substrates with a superior ability to bind to the lateral gate of BamA. Upon binding, darobactin replaces a lipid molecule from the lateral gate to use the membrane environment as an extended binding pocket. Because the interaction between darobactin and BamA is largely mediated by backbone contacts, it is particularly robust against potential resistance mutations. Our results identify the lateral gate as a functional hotspot in BamA and will allow the rational design of antibiotics that target this bacterial Achilles heel.
Structural studies resolve how the antibiotic darobactin inhibits the bacterial BAM insertase.
Journal Article
Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps
2022
Efflux transporters of the RND family confer resistance to multiple antibiotics in Gram-negative bacteria. Here, we identify and chemically optimize pyridylpiperazine-based compounds that potentiate antibiotic activity in
E. coli
through inhibition of its primary RND transporter, AcrAB-TolC. Characterisation of resistant
E. coli
mutants and structural biology analyses indicate that the compounds bind to a unique site on the transmembrane domain of the AcrB L protomer, lined by key catalytic residues involved in proton relay. Molecular dynamics simulations suggest that the inhibitors access this binding pocket from the cytoplasm via a channel exclusively present in the AcrB L protomer. Thus, our work unveils a class of allosteric efflux-pump inhibitors that likely act by preventing the functional catalytic cycle of the RND pump.
Efflux transporters of the RND family confer resistance to multiple antibiotics in Gram-negative bacteria. Here, the authors identify pyridylpiperazine-based compounds that potentiate antibiotic activity in
E. coli
through allosteric inhibition of its primary RND transporter.
Journal Article
Structural basis for the inhibition of bacterial multidrug exporters
by
Nishino, Kunihiko
,
Yamaguchi, Akihito
,
Yamasaki, Seiji
in
631/45/612/1237
,
631/535/1266
,
631/92/577
2013
The first inhibitor-bound X-ray crystal structures of the bacterial multidrug efflux transporter AcrB and its homologue MexB are presented, with the inhibitor shown to bind the transporter through a narrow hydrophobic pit, thereby preventing rotation of AcrB and MexB monomers.
Bacterial multidrug exporter structures
Inhibitors of bacterial multidrug efflux transporters are necessary to combat bacterial multidrug resistance, but no clinically useful inhibitors are currently available. The multidrug efflux transporter AcrB and its homologues facilitate the multidrug resistance of many Gram-negative pathogens, and in this paper Akihito Yamaguchi and colleagues describe the first X-ray crystal structures of inhibitor-bound AcrB and its homologue MexB. The inhibitor, a pyridopyrimidine derivative, binds in a narrow hydrophobic 'pit' and inhibits the functional rotation of the AcrB/MexB monomers. These inhibitor-bound structures may facilitate the development of new inhibitors of this family of multidrug efflux transporters, which could be used in conjunction with existing antibiotics to help make them more effective.
The multidrug efflux transporter AcrB and its homologues are important in the multidrug resistance of Gram-negative pathogens
1
,
2
. However, despite efforts to develop efflux inhibitors
3
, clinically useful inhibitors are not available at present
4
,
5
. Pyridopyrimidine derivatives are AcrB- and MexB-specific inhibitors that do not inhibit MexY
6
,
7
; MexB and MexY are principal multidrug exporters in
Pseudomonas aeruginosa
8
,
9
,
10
. We have previously determined the crystal structure of AcrB in the absence and presence of antibiotics
11
,
12
,
13
. Drugs were shown to be exported by a functionally rotating mechanism
12
through tandem proximal and distal multisite drug-binding pockets
13
. Here we describe the first inhibitor-bound structures of AcrB and MexB, in which these proteins are bound by a pyridopyrimidine derivative. The pyridopyrimidine derivative binds tightly to a narrow pit composed of a phenylalanine cluster located in the distal pocket and sterically hinders the functional rotation. This pit is a hydrophobic trap that branches off from the substrate-translocation channel. Phe 178 is located at the edge of this trap in AcrB and MexB and contributes to the tight binding of the inhibitor molecule through a π–π interaction with the pyridopyrimidine ring. The voluminous side chain of Trp 177 located at the corresponding position in MexY prevents inhibitor binding. The structure of the hydrophobic trap described in this study will contribute to the development of universal inhibitors of MexB and MexY in
P. aeruginosa
.
Journal Article
Antibacterial macrocyclic peptides reveal a distinct mode of BamA inhibition
2025
Outer membrane proteins (OMPs) produced by Gram-negative bacteria contain a cylindrical amphipathic β-sheet (“β-barrel”) that functions as a membrane spanning domain. The assembly (folding and membrane insertion) of OMPs is mediated by the heterooligomeric β-
b
arrel
a
ssembly
m
achine (BAM). The central BAM subunit (BamA) is an attractive antibacterial target because its structure and cell surface localization are conserved, it catalyzes an essential reaction, and potent bactericidal compounds that inhibit its activity have been described. Here we utilize mRNA display to discover cyclic peptides that bind to
Escherichia coli
BamA with high affinity. We describe three peptides that arrest the growth of BAM deficient
E. coli
strains, inhibit OMP assembly in live cells and in vitro, and bind to unique sites within the BamA β-barrel lumen. Remarkably, we find that if the peptides are added to cultures after a slowly assembling OMP mutant binds to BamA, they accelerate its biogenesis. The data strongly suggest that the peptides trap BamA in conformations that block the initiation of OMP assembly but favor a later assembly step. Molecular dynamics simulations provide further evidence that the peptides bind stably to BamA and function by a previously undescribed mechanism.
Here the authors use mRNA display to discover peptide inhibitors of BamA, an essential factor that catalyzes the membrane insertion of bacterial outer membrane proteins. They show that three peptides are antibacterial and inhibit BamA activity by a unique mechanism.
Journal Article
Identification of Natural Compound Inhibitors for Multidrug Efflux Pumps of Escherichia coli and Pseudomonas aeruginosa Using In Silico High-Throughput Virtual Screening and In Vitro Validation
by
Mohanalakshmi, Narasumani
,
Aparna, Vasudevan
,
Velmurugan, Devadasan
in
Accumulation
,
Amino Acid Sequence
,
Analysis
2014
Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH) generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination therapy against drug resistant strains of P. aeruginosa and E. coli.
Journal Article
biosynthesis of peptidoglycan lipid-linked intermediates
by
Bouhss, Ahmed
,
Trunkfield, Amy E
,
Bugg, Timothy D.H
in
Bacteria - chemistry
,
Bacteria - metabolism
,
Bacterial Outer Membrane Proteins - antagonists & inhibitors
2008
The biosynthesis of bacterial cell wall peptidoglycan is a complex process involving many different steps taking place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner and outer sides of the cytoplasmic membrane (assembly and polymerization of the disaccharide-peptide monomer unit, respectively). This review summarizes the current knowledge on the membrane steps leading to the formation of the lipid II intermediate, i.e. the substrate of the polymerization reactions. It makes the point on past and recent data that have significantly contributed to the understanding of the biosynthesis of undecaprenyl phosphate, the carrier lipid required for the anchoring of the peptidoglycan hydrophilic units in the membrane, and to the characterization of the MraY and MurG enzymes which catalyze the successive transfers of the N-acetylmuramoyl-peptide and N-acetylglucosamine moieties onto the carrier lipid, respectively. Enzyme inhibitors and antibacterial compounds interfering with these essential metabolic steps and interesting targets are presented.
Journal Article
Small molecule inhibitor targets OmpV to treat pandemic Vibrio cholerae infection
2025
Cholera, a severe diarrhoeal illness caused by
Vibrio cholerae
(
V. cholerae
), poses a significant threat to public health worldwide. The emergence of multidrug-resistant
V. cholerae
strains underscores the urgent need for preventive and therapeutic interventions. In this study, we elucidate the role of outer membrane protein V (OmpV) in the virulence of
V. cholerae
and propose a therapeutic strategy targeting OmpV. Subcellular localization analysis shows that OmpV is present in both the bacterial outer membrane (OM) and bacterial extracellular vesicles (BEVs). When
V. cholerae
enters the small intestine, OmpV is activated by the CarSR two-component system in response to cationic antimicrobial peptides (CAMPs) in the small intestine, leading to increased bacterial pathogenicity. The upregulation of
ompV
not only augments bacterial adhesion but also promotes the internalization of BEVs into host cells, thereby increasing the delivery of cholera toxin (CT) to host cells. Computational aided drug design (CADD) shows that the small-molecule inhibitor C607-0736 is capable of disrupting the virulence functions of OmpV. Animal experiments show that C607-0736 efficiently inhibits the colonization and pathogenicity of the
V. cholerae
O1 and O139 strains. These findings underscore the therapeutic potential of OmpV-targeting strategies and offer promising avenues for addressing multidrug-resistant
V. cholerae
.
In this work, authors show that a small molecule inhibitor, C607-0736, blocks the virulence of pandemic
Vibrio cholerae
by targeting the outer membrane protein OmpV, reducing bacterial adhesion and toxin delivery.
Journal Article