Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,814
result(s) for
"Bacterial Proteins - ultrastructure"
Sort by:
Identical folds used for distinct mechanical functions of the bacterial flagellar rod and hook
2017
The bacterial flagellum is a motile organelle driven by a rotary motor, and its axial portions function as a drive shaft (rod), a universal joint (hook) and a helical propeller (filament). The rod and hook are directly connected to each other, with their subunit proteins FlgG and FlgE having 39% sequence identity, but show distinct mechanical properties; the rod is straight and rigid as a drive shaft whereas the hook is flexible in bending as a universal joint. Here we report the structure of the rod and comparison with that of the hook. While these two structures have the same helical symmetry and repeat distance and nearly identical folds of corresponding domains, the domain orientations differ by ∼7°, resulting in tight and loose axial subunit packing in the rod and hook, respectively, conferring the rigidity on the rod and flexibility on the hook. This provides a good example of versatile use of a protein structure in biological organisms.
The bacterial flagellum is a motile organelle that enables bacterial movement. Here the authors explain how the structurally similar flagellum components FlgG and FlgE can give rise to distinct macrostructures—the rod and hook—through subtle differences in domain orientation attributable to a short N-terminal insertion in FlgG.
Journal Article
Core architecture of a bacterial type II secretion system
2019
Bacterial type II secretion systems (T2SSs) translocate virulence factors, toxins and enzymes across the cell outer membrane. Here we use negative stain and cryo-electron microscopy to reveal the core architecture of an assembled T2SS from the pathogen
Klebsiella pneumoniae
. We show that 7 proteins form a ~2.4 MDa complex that spans the cell envelope. The outer membrane complex includes the secretin PulD, with all domains modelled, and the pilotin PulS. The inner membrane assembly platform components PulC, PulE, PulL, PulM and PulN have a relative stoichiometric ratio of 2:1:1:1:1. The PulE ATPase, PulL and PulM combine to form a flexible hexameric hub. Symmetry mismatch between the outer membrane complex and assembly platform is overcome by PulC linkers spanning the periplasm, with PulC HR domains binding independently at the secretin base. Our results show that the T2SS has a highly dynamic modular architecture, with implication for pseudo-pilus assembly and substrate loading.
Bacterial type II secretion systems (T2SSs) translocate virulence factors, toxins and enzymes across the cell outer membrane. Here, Chernyatina and Low use negative stain and cryo-electron microscopy to reveal the core architecture of an assembled T2SS from the pathogen
Klebsiella pneumoniae
.
Journal Article
Structure of a Type IV Secretion System Core Complex
by
Orlova, Elena V
,
Waksman, Gabriel
,
Fronzes, Rémi
in
Adenosine triphosphatases
,
Antibiotic resistance
,
Antibiotics
2009
Type IV secretion systems (T4SSs) are important virulence factors used by Gram-negative bacterial pathogens to inject effectors into host cells or to spread plasmids harboring antibiotic resistance genes. We report the 15 angstrom resolution cryo-electron microscopy structure of the core complex of a T4SS. The core complex is composed of three proteins, each present in 14 copies and forming a ~1.1-megadalton two-chambered, double membrane-spanning channel. The structure is double-walled, with each component apparently spanning a large part of the channel. The complex is open on the cytoplasmic side and constricted on the extracellular side. Overall, the T4SS core complex structure is different in both architecture and composition from the other known double membrane-spanning secretion system that has been structurally characterized.
Journal Article
The Escherichia coli Outer Membrane β-Barrel Assembly Machinery (BAM) Crosstalks with the Divisome
by
Consoli, Elisa
,
den Blaauwen, Tanneke
,
Luirink, Joen
in
Antibiotics
,
Bacteria
,
Bacterial Outer Membrane Proteins - genetics
2021
The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane β-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.
Journal Article
Binding interface between the Salmonella σ(S)/RpoS subunit of RNA polymerase and Crl: hints from bacterial species lacking crl
by
Bontems, François
,
Nowakowski, Mireille
,
Levi-Acobas, Fabienne
in
Amino Acid Sequence
,
Amino Acid Substitution
,
Bacterial Proteins - chemistry
2015
In many Gram-negative bacteria, including Salmonella enterica serovar Typhimurium (S. Typhimurium), the sigma factor RpoS/σ(S) accumulates during stationary phase of growth, and associates with the core RNA polymerase enzyme (E) to promote transcription initiation of genes involved in general stress resistance and starvation survival. Whereas σ factors are usually inactivated upon interaction with anti-σ proteins, σ(S) binding to the Crl protein increases σ(S) activity by favouring its association to E. Taking advantage of evolution of the σ(S) sequence in bacterial species that do not contain a crl gene, like Pseudomonas aeruginosa, we identified and assigned a critical arginine residue in σ(S) to the S. Typhimurium σ(S)-Crl binding interface. We solved the solution structure of S. Typhimurium Crl by NMR and used it for NMR binding assays with σ(S) and to generate in silico models of the σ(S)-Crl complex constrained by mutational analysis. The σ(S)-Crl models suggest that the identified arginine in σ(S) interacts with an aspartate of Crl that is required for σ(S) binding and is located inside a cavity enclosed by flexible loops, which also contribute to the interface. This study provides the basis for further structural investigation of the σ(S)-Crl complex.
Journal Article
Structure of the bacterial ribosome at 2 Å resolution
2020
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement. Inside cells, proteins are produced by complex molecular machines called ribosomes. Techniques that allow scientists to visualize ribosomes at the atomic level, such as cryogenic electron microscopy (cryo-EM), help shed light on the structure of these molecular machines, revealing details of how they build proteins. Understanding how ribosomes work has many benefits, including the development of new antibiotics that can kill bacteria without affecting animal cells. Watson et al. used cryo-EM techniques with increased resolution to examine the ribosomes of the bacterium Escherichia coli in a higher level of detail than has been seen before. The results revealed two chemical modifications in proteins that form the ribosome that had not been observed in ribosomes previously. Additionally, a protein segment with a previously undescribed structure was identified close to the site where the ribosome reads the genetic instructions needed to make proteins. Further genetic analyses suggested these structures are in many related species, and may play important roles in how the ribosome works. Watson et al. were also able to see how paromomycin, an antibiotic used to treat parasitic infections, is positioned in the ribosome. The antibiotic interacts with a site near where the genetic code is read out, which might explain why certain changes to the antibiotic can interfere with its potency. Finally, the new ribosome structure reveals thousands of water molecules and metal ions that help keep the ribosome together as it produces proteins. This study shows the value of advances in cryo-EM technology and illustrates the importance of applying these techniques to other cell components. The results also reveal details of the ribosome useful for further research into this essential molecular machine.
Journal Article
Cryo-EM structure of an active bacterial TIR–STING filament complex
by
McNamara-Bordewick, Nora K.
,
Kranzusch, Philip J.
,
Yip, Matthew C. J.
in
101/28
,
631/250/262
,
631/326/41/2533
2022
Stimulator of interferon genes (STING) is an antiviral signalling protein that is broadly conserved in both innate immunity in animals and phage defence in prokaryotes
1
–
4
. Activation of STING requires its assembly into an oligomeric filament structure through binding of a cyclic dinucleotide
4
–
13
, but the molecular basis of STING filament assembly and extension remains unknown. Here we use cryogenic electron microscopy to determine the structure of the active Toll/interleukin-1 receptor (TIR)–STING filament complex from a
Sphingobacterium faecium
cyclic-oligonucleotide-based antiphage signalling system (CBASS) defence operon. Bacterial TIR–STING filament formation is driven by STING interfaces that become exposed on high-affinity recognition of the cognate cyclic dinucleotide signal c-di-GMP. Repeating dimeric STING units stack laterally head-to-head through surface interfaces, which are also essential for human STING tetramer formation and downstream immune signalling in mammals
5
. The active bacterial TIR–STING structure reveals further cross-filament contacts that brace the assembly and coordinate packing of the associated TIR NADase effector domains at the base of the filament to drive NAD
+
hydrolysis. STING interface and cross-filament contacts are essential for cell growth arrest in vivo and reveal a stepwise mechanism of activation whereby STING filament assembly is required for subsequent effector activation. Our results define the structural basis of STING filament formation in prokaryotic antiviral signalling.
Through structural analysis of the activation of bacterial STING, the molecular basis of STING filament formation and TIR effector domain activation in antiphage signalling is defined.
Journal Article
Structural basis for GSDMB pore formation and its targeting by IpaH7.8
2023
Gasdermins (GSDMs) are pore-forming proteins that play critical roles in host defence through pyroptosis
1
,
2
. Among GSDMs, GSDMB is unique owing to its distinct lipid-binding profile and a lack of consensus on its pyroptotic potential
3
–
7
. Recently, GSDMB was shown to exhibit direct bactericidal activity through its pore-forming activity
4
.
Shigella
, an intracellular, human-adapted enteropathogen, evades this GSDMB-mediated host defence by secreting IpaH7.8, a virulence effector that triggers ubiquitination-dependent proteasomal degradation of GSDMB
4
. Here, we report the cryogenic electron microscopy structures of human GSDMB in complex with
Shigella
IpaH7.8 and the GSDMB pore. The structure of the GSDMB–IpaH7.8 complex identifies a motif of three negatively charged residues in GSDMB as the structural determinant recognized by IpaH7.8. Human, but not mouse, GSDMD contains this conserved motif, explaining the species specificity of IpaH7.8. The GSDMB pore structure shows the alternative splicing-regulated interdomain linker in GSDMB as a regulator of GSDMB pore formation. GSDMB isoforms with a canonical interdomain linker exhibit normal pyroptotic activity whereas other isoforms exhibit attenuated or no pyroptotic activity. Overall, this work sheds light on the molecular mechanisms of
Shigella
IpaH7.8 recognition and targeting of GSDMs and shows a structural determinant in GSDMB critical for its pyroptotic activity.
The authors report the cryogenic electron microscopy structures of human GSDMB in complex with
Shigella
IpaH7.8 and the GSDMB pore, shedding light on the molecular mechanisms of
Shigella
IpaH7.8 recognition and targeting of GSDMs and GSDMB pore formation.
Journal Article
Cryo-EM structure of the transposon-associated TnpB enzyme
2023
The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins
1
. Recent studies have identified TnpB proteins as miniature RNA-guided DNA endonucleases
2
,
3
. TnpB associates with a single, long RNA (ωRNA) and cleaves double-stranded DNA targets complementary to the ωRNA guide. However, the RNA-guided DNA cleavage mechanism of TnpB and its evolutionary relationship with Cas12 enzymes remain unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of
Deinococcus radiodurans
ISDra2 TnpB in complex with its cognate ωRNA and target DNA. In the structure, the ωRNA adopts an unexpected architecture and forms a pseudoknot, which is conserved among all guide RNAs of Cas12 enzymes. Furthermore, the structure, along with our functional analysis, reveals how the compact TnpB recognizes the ωRNA and cleaves target DNA complementary to the guide. A structural comparison of TnpB with Cas12 enzymes suggests that CRISPR–Cas12 effectors acquired an ability to recognize the protospacer-adjacent motif-distal end of the guide RNA–target DNA heteroduplex, by either asymmetric dimer formation or diverse REC2 insertions, enabling engagement in CRISPR–Cas adaptive immunity. Collectively, our findings provide mechanistic insights into TnpB function and advance our understanding of the evolution from transposon-encoded TnpB proteins to CRISPR–Cas12 effectors.
Cryo-electron microscopy analysis of the
Deinococcus radiodurans
ISDra2 TnpB in complex with its cognate ωRNA and target DNA provides insights into the mechanism of TnpB function and the evolution of CRISPR–Cas12 effectors.
Journal Article
Structural basis of MsbA-mediated lipopolysaccharide transport
2017
Lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria is critical for the assembly of their cell envelopes. LPS synthesized in the cytoplasmic leaflet of the inner membrane is flipped to the periplasmic leaflet by MsbA, an ATP-binding cassette transporter. Despite substantial efforts, the structural mechanisms underlying MsbA-driven LPS flipping remain elusive. Here we use single-particle cryo-electron microscopy to elucidate the structures of lipid-nanodisc-embedded MsbA in three functional states. The 4.2 Å-resolution structure of the transmembrane domains of nucleotide-free MsbA reveals that LPS binds deep inside MsbA at the height of the periplasmic leaflet, establishing extensive hydrophilic and hydrophobic interactions with MsbA. Two sub-nanometre-resolution structures of MsbA with ADP-vanadate and ADP reveal an unprecedented closed and an inward-facing conformation, respectively. Our study uncovers the structural basis for LPS recognition, delineates the conformational transitions of MsbA to flip LPS, and paves the way for structural characterization of other lipid flippases.
Cryo-electron microscopy snapshots of the
E. coli
flippase MsbA at discrete functional states reveal a ‘trap and flip’ mechanism for lipopolysaccharide flipping and the conformational transitions of MsbA during its substrate transport cycle.
'Trap and flip' mechanism for lipopolysaccharide transport
The translocation and flipping of lipids across membrane bilayers is important for maintaining lipid asymmetry, but it also plays a part in membrane trafficking and signalling. This process is catalysed by flippases, bacterial ATP-binding cassette transporters that flip lipopolysaccharide (LPS). Because of the importance of LPS transport to bacterial survival, these transporters are also a target for the development of antibiotics. Here, Maofu Liao and colleagues present the structural basis of LPS recognition by the
Escherichia coli
flippase MsbA and reveal the trajectory of LPS. Using cryo-electron microscopy the authors provide snapshots of several of the states involved in lipid translocation across the bacterial membrane. In one of these states, they detected electron density within the transmembrane domain of MsbA corresponding to LPS. On the basis of these insights, the researchers propose a 'trap and flip' mechanism in which LPS translocates far into the transporter without flipping.
Journal Article