Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,870
result(s) for
"Bacteriophages - physiology"
Sort by:
Bacteriophage adhering to mucus provide a non-host-derived immunity
2013
Mucosal surfaces are a main entry point for pathogens and the principal sites of defense against infection. Both bacteria and phage are associated with this mucus. Here we show that phageto-bacteria ratios were increased, relative to the adjacent environment on all mucosal surfaces sampled, ranging from cnidarians to humans. In vitro studies of tissue culture cells with and without surface mucus demonstrated that this increase in phage abundance is mucus dependent and protects the underlying epithelium from bacterial infection. Enrichment of phage in mucus occurs via binding interactions between mucin glycoproteins and Ig-like protein domains exposed on phage capsids. In particular, phage Ig-like domains bind variable glycan residues that coat the mucin glycoprotein component of mucus. Metagenomic analysis found these Ig-like proteins present in the phages sampled from many environments, particularly from locations adjacent to mucosal surfaces. Based on these observations, we present the bacteriophage adherence to mucus model that provides a ubiquitous, but non-host-derived, immunity applicable to mucosal surfaces. The model suggests that metazoan mucosal surfaces and phage coevolve to maintain phage adherence. This benefits the metazoan host by limiting mucosal bacteria, and benefits the phage through more frequent interactions with bacterial hosts. The relationships shown here suggest a symbiotic relationship between phage and metazoan hosts that provides a previously unrecognized antimicrobial defense that actively protects mucosal surfaces.
Journal Article
The phageome of patients with ulcerative colitis treated with donor fecal microbiota reveals markers associated with disease remission
by
Majzoub, Marwan E.
,
Kamm, Michael A.
,
Kaakoush, Nadeem O.
in
45/23
,
631/326/1321
,
631/326/2565/2142
2024
Bacteriophages are influential within the human gut microbiota, yet they remain understudied relative to bacteria. This is a limitation of studies on fecal microbiota transplantation (FMT) where bacteriophages likely influence outcome. Here, using metagenomics, we profile phage populations - the phageome - in individuals recruited into two double-blind randomized trials of FMT in ulcerative colitis. We leverage the trial designs to observe that phage populations behave similarly to bacterial populations, showing temporal stability in health, dysbiosis in active disease, modulation by antibiotic treatment and by FMT. We identify a donor bacteriophage putatively associated with disease remission, which on genomic analysis was found integrated in a bacterium classified to
Oscillospiraceae
, previously isolated from a centenarian and predicted to produce vitamin B complex except B12. Our study provides an in-depth assessment of phage populations during different states and suggests that bacteriophage tracking has utility in identifying determinants of disease activity and resolution.
Here, the authors profile the gut phageome of individuals recruited into two double-blind randomized trials of Fecal Microbial Transplantation for ulcerative colitis, showing that phage communities are stable in health, dysbiotic in ulcerative colitis, modulated by antibiotics and by fecal transplants, with one
Oscillospiraceae
phage being associated with disease remission.
Journal Article
Fecal microbiota transplantation alters gut phage communities in a clinical trial for obesity
by
O’Sullivan, Justin M.
,
Zuppi, Michele
,
Vickers, Mark H.
in
Adolescent
,
Bacteria - classification
,
Bacteria - genetics
2024
Background
Fecal microbiota transplantation (FMT) is a therapeutic intervention used to treat diseases associated with the gut microbiome. In the human gut microbiome, phages have been implicated in influencing human health, with successful engraftment of donor phages correlated with FMT treatment efficacy. The impact that gastrointestinal phages exert on human health has primarily been connected to their ability to modulate the bacterial communities in the gut. Nonetheless, how FMT affects recipients’ phage populations, and in turn, how this influences the gut environment, is not yet fully understood. In this study, we investigated the effects of FMT on the phageome composition of participants within the Gut Bugs Trial (GBT), a double-blind, randomized, placebo-controlled trial that investigated the efficacy of FMT in treating obesity and comorbidities in adolescents. Stool samples collected from donors at the time of treatment and recipients at four time points (i.e., baseline and 6 weeks, 12 weeks, and 26 weeks post-intervention), underwent shotgun metagenomic sequencing. Phage sequences were identified and characterized in silico to examine evidence of phage engraftment and to assess the extent of FMT-induced alterations in the recipients’ phageome composition.
Results
Donor phages engrafted stably in recipients following FMT, composing a significant proportion of their phageome for the entire course of the study (33.8 ± 1.2% in females and 33.9 ± 3.7% in males). Phage engraftment varied between donors and donor engraftment efficacy was positively correlated with their phageome alpha diversity. FMT caused a shift in recipients’ phageome toward the donors’ composition and increased phageome alpha diversity and variability over time.
Conclusions
FMT significantly altered recipients' phage and, overall, microbial populations. The increase in microbial diversity and variability is consistent with a shift in microbial population dynamics. This proposes that phages play a critical role in modulating the gut environment and suggests novel approaches to understanding the efficacy of FMT in altering the recipient’s microbiome.
Trial registration
The Gut Bugs Trial was registered with the Australian New Zealand Clinical Trials Registry (ACTR N12615001351505). Trial protocol: the trial protocol is available at
https://bmjopen.bmj.com/content/9/4/e026174
.
A4HmAXiKAUhp3nsywzn7_Q
Video Abstract
Journal Article
Statistical structure of host—phage interactions
by
Meyer, Justin R.
,
Flores, Cesar O.
,
Farr, Lauren
in
Bacteria
,
Bacteria - genetics
,
Bacteria - virology
2011
Interactions between bacteria and the viruses that infect them (i.e., phages) have profound effects on biological processes, but despite their importance, little is known on the general structure of infection and resistance between most phages and bacteria. For example, are bacteria–phage communities characterized by complex patterns of overlapping exploitation networks, do they conform to a more ordered general pattern across all communities, or are they idiosyncratic and hard to predict from one ecosystem to the next? To answer these questions, we collect and present a detailed metaanalysis of 38 laboratory-verified studies of host–phage interactions representing almost 12,000 distinct experimental infection assays across a broad spectrum of taxa, habitat, and mode of selection. In so doing, we present evidence that currently available host–phage infection networks are statistically different from random networks and that they possess a characteristic nested structure. This nested structure is typified by the finding that hard to infect bacteria are infected by generalist phages (and not specialist phages) and that easy to infect bacteria are infected by generalist and specialist phages. Moreover, we find that currently available host–phage infection networks do not typically possess a modular structure. We explore possible underlying mechanisms and significance of the observed nested host–phage interaction structure. In addition, given that most of the available host–phage infection networks examined here are composed of taxa separated by short phylogenetic distances, we propose that the lack of modularity is a scale-dependent effect, and then, we describe experimental studies to test whether modular patterns exist at macroevolutionary scales.
Journal Article
Virus Population Dynamics and Acquired Virus Resistance in Natural Microbial Communities
2008
Viruses shape microbial community structure and function by altering the fitness of their hosts and by promoting genetic exchange. The complexity of most natural ecosystems has precluded detailed studies of virus-host interactions. We reconstructed virus and host bacterial and archaeal genome sequences from community genomic data from two natural acidophilic biofilms. Viruses were matched to their hosts by analyzing spacer sequences that occur among clustered regularly interspaced short palindromic repeats (CRISPRs) that are a hallmark of virus resistance. Virus population genomic analyses provided evidence that extensive recombination shuffles sequence motifs sufficiently to evade CRISPR spacers. Only the most recently acquired spacers match coexisting viruses, which suggests that community stability is achieved by rapid but compensatory shifts in host resistance levels and virus population structure.
Journal Article
Application of Bacteriophage-containing Aerosol against Nosocomial Transmission of Carbapenem-Resistant Acinetobacter baumannii in an Intensive Care Unit
by
Tseng, Chun-Chieh
,
Wang, Ling-Yi
,
Wang, Lih-Shinn
in
Acinetobacter baumannii
,
Acinetobacter baumannii - drug effects
,
Acinetobacter baumannii - isolation & purification
2016
Carbapenem-resistant Acinetobacter baumannii (CRAB) is associated with nosocomial infections worldwide. Here, we used phage as a potential agent to evaluate the efficacy of daily cleaning practices combined with a bacteriophage-containing aerosol against CRAB.
A two-phase prospective intervention study was performed at a 945-bed public teaching hospital. From March to December 2013, we performed terminal cleaning using standard procedures plus an aerosol with active bacteriophage in the intensive care units to evaluate the impact on nosocomial incidence density, carbapenem-resistance rates and antimicrobial drug consumption amounts. Patients with culture proven CRAB infection were transferred to the isolation room when the phage aerosol cleaning had been completed.
A total of 264 new acquisitions of CRAB were identified in the intensive care units (191 in the pre-intervention period and 73 in the intervention period). The rates of new acquisitions of CRAB in the intensive care units decreased from 8.57 per 1000 patient-days in the pre-intervention period to 5.11 per 1000 patient-days in the intervention period (p = 0.0029). The mean percentage of resistant isolates CRAB decreased from 87.76% to 46.07% in the intensive care units (p = 0.001). All of the antimicrobials showed a significant reduction in consumption except imipenem.
The bacteriophage was successful in decreasing the rates of infection caused by CRAB across intensive care units in a large teaching hospital.
Journal Article
Using bacterial population dynamics to count phages and their lysogens
2024
Traditional assays for counting bacteriophages and their lysogens are labor-intensive and perturbative to the host cells. Here, we present a high-throughput infection method in a microplate reader, where the growth dynamics of the infected culture is measured using the optical density (OD). We find that the OD at which the culture lyses scales linearly with the logarithm of the initial phage concentration, providing a way of measuring phage numbers over nine orders of magnitude and down to single-phage sensitivity. Interpreting the measured dynamics using a mathematical model allows us to infer the phage growth rate, which is a function of the phage-cell encounter rate, latent period, and burst size. Adding antibiotic selection provides the ability to measure the rate of host lysogenization. Using this method, we found that when
E. coli
growth slows down, the lytic growth rate of lambda phages decreases, and the propensity for lysogeny increases, demonstrating how host physiology influences the viral developmental program.
Traditional assays for counting bacteriophages and their lysogens are labor-intensive and perturbative to the host cells. Here, the authors present a high-throughput method that can be used to estimate the number of phages in a sample, by measuring growth dynamics of the infected culture in a microplate reader.
Journal Article
Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea
by
Kim, So-Jeong
,
Yu, Woon-Jong
,
Gwak, Joo-Han
in
Ammonia
,
Ammonia - metabolism
,
Aquatic Organisms - genetics
2019
Ammonia-oxidizing archaea (AOA) fromthe phylum Thaumarchaeota are ubiquitous in marine ecosystems and play a prominent role in carbon and nitrogen cycling. Previous studies have suggested that, like allmicrobes, thaumarchaea are infected by viruses and that viral predation has a profound impact on thaumarchaeal functioning and mortality, thereby regulating global biogeochemical cycles. However, not a single virus capable of infecting thaumarchaea has been reported thus far. Here we describe the isolation and characterization of three Nitrosopumilus spindle-shaped viruses (NSVs) that infect AOA and are distinct from other known marine viruses. Although NSVs have a narrow host range, they efficiently infect autochthonous Nitrosopumilus strains and display high rates of adsorption to their host cells. The NSVs have linear double-stranded DNA genomes of ∼28 kb that do not display appreciable sequence similarity to genomes of other known archaeal or bacterial viruses and could be considered as representatives of a new virus family, the “Thaspiviridae.” Upon infection, NSV replication leads to inhibition of AOA growth, accompanied by severe reduction in the rate of ammonia oxidation and nitrite reduction. Nevertheless, unlike in the case of lytic bacteriophages, NSV propagation is not associated with detectable degradation of the host chromosome or a decrease in cell counts. The broad distribution of NSVs in AOA-dominated marine environments suggests that NSV predation might regulate the diversity and dynamics of AOA communities. Collectively, our results shed light on the diversity, evolution, and potential impact of the virosphere associated with ecologically important mesophilic archaea.
Journal Article
Profiling the human intestinal environment under physiological conditions
by
Meng, Xiandong
,
Triadafilopoulos, George
,
Aranda-Díaz, Andrés
in
45/23
,
631/326/2565/2134
,
631/61/320
2023
The spatiotemporal structure of the human microbiome
1
,
2
, proteome
3
and metabolome
4
,
5
reflects and determines regional intestinal physiology and may have implications for disease
6
. Yet, little is known about the distribution of microorganisms, their environment and their biochemical activity in the gut because of reliance on stool samples and limited access to only some regions of the gut using endoscopy in fasting or sedated individuals
7
. To address these deficiencies, we developed an ingestible device that collects samples from multiple regions of the human intestinal tract during normal digestion. Collection of 240 intestinal samples from 15 healthy individuals using the device and subsequent multi-omics analyses identified significant differences between bacteria, phages, host proteins and metabolites in the intestines versus stool. Certain microbial taxa were differentially enriched and prophage induction was more prevalent in the intestines than in stool. The host proteome and bile acid profiles varied along the intestines and were highly distinct from those of stool. Correlations between gradients in bile acid concentrations and microbial abundance predicted species that altered the bile acid pool through deconjugation. Furthermore, microbially conjugated bile acid concentrations exhibited amino acid-dependent trends that were not apparent in stool. Overall, non-invasive, longitudinal profiling of microorganisms, proteins and bile acids along the intestinal tract under physiological conditions can help elucidate the roles of the gut microbiome and metabolome in human physiology and disease.
Variations in microbial composition, phage induction, antimicrobial resistance genes and bile acid profiles are identified by using an ingestible device for site-specific sampling along the intestines.
Journal Article
Effect of Bacteriophage Infection in Combination with Tobramycin on the Emergence of Resistance in Escherichia coli and Pseudomonas aeruginosa Biofilms
by
Rohde, Rodney
,
Coulter, Lindsey
,
McLean, Robert
in
Anti-Bacterial Agents - pharmacology
,
antibiotic
,
Antibiotics
2014
Bacteriophage infection and antibiotics used individually to reduce biofilm mass often result in the emergence of significant levels of phage and antibiotic resistant cells. In contrast, combination therapy in Escherichia coli biofilms employing T4 phage and tobramycin resulted in greater than 99% and 39% reduction in antibiotic and phage resistant cells, respectively. In P. aeruginosa biofilms, combination therapy resulted in a 60% and 99% reduction in antibiotic and PB-1 phage resistant cells, respectively. Although the combined treatment resulted in greater reduction of E. coli CFUs compared to the use of antibiotic alone, infection of P. aeruginosa biofilms with PB-1 in the presence of tobramycin was only as effective in the reduction of CFUs as the use of antibiotic alone. The study demonstrated phage infection in combination with tobramycin can significantly reduce the emergence of antibiotic and phage resistant cells in both E. coli and P. aeruginosa biofilms, however, a reduction in biomass was dependent on the phage-host system.
Journal Article