Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
242
result(s) for
"Balaenoptera physalus"
Sort by:
Contrasting Phylogeographic Patterns Among Northern and Southern Hemisphere Fin Whale Populations With New Data From the Southern Pacific
by
Olavarría, Carlos
,
Santos-Carvallo, Macarena
,
Sepúlveda, Maritza
in
Aquatic mammals
,
Balaenoptera physalus
,
Balaenoptera physalus patachonica
2021
Four fin whale sub-species are currently considered valid:
Balaenoptera physalus physalus
in the North Atlantic,
B. p. velifera
in the North Pacific,
B. p. quoyi
and
B. p. patachonica
in the Southern Hemisphere. The last, not genetically validated, was described as a pygmy-type sub-species, found in low to mid latitudes of the Southern Hemisphere. Genetic analyses across hemispheres show strong phylogeographic structure, yet low geographic coverage in middle latitudes of the Southern Hemisphere impeded an assessment within the area, as well as evaluating the validity of
B. p. patachonica
. New mtDNA sequences from the Southeastern Pacific allowed an improved coverage of the species’ distribution. Our phylogenetic analyses showed three main lineages and contrasting phylogeographic patterns between Northern and Southern Hemispheres. Absence of recurrent female mediated gene flow between hemispheres was found; however, rare dispersal events revealing old migrations were noted. The absence of genetic structure suggests the existence of one single taxa within the Southern Hemisphere. Thus, until further evidence supporting this subspecies can be produced, such as genetic, ecological, behavioral, or morphological data, we propose that all fin whales from the Southern Hemisphere, including those from middle latitudes of the Southeastern Pacific belong to
B. p. quoyi
subspecies. This information is important for the current assessment of fin whales, contributing to the evaluation of the taxonomic classification and the conservation of the species.
Journal Article
Integrating population dynamics models and distance sampling data: a spatial hierarchical state-space approach
by
Moore, Jeffrey E.
,
Zhang, Ying
,
Chipman, Hugh
in
Akaike information criterion
,
Algorithms
,
Animals
2016
Stochastic versions of Gompertz, Ricker, and various other dynamics models play a fundamental role in quantifying strength of density dependence and studying longterm dynamics of wildlife populations. These models are frequently estimated using time series of abundance estimates that are inevitably subject to observation error and missing data. This issue can be addressed with a state-space modeling framework that jointly estimates the observed data model and the underlying stochastic population dynamics (SPD) model. In cases where abundance data are from multiple locations with a smaller spatial resolution (e.g., from mark-recapture and distance sampling studies), models are conventionally fitted to spatially pooled estimates of yearly abundances. Here, we demonstrate that a spatial version of SPD models can be directly estimated from short time series of spatially referenced distance sampling data in a unified hierarchical state-space modeling framework that also allows for spatial variance (covariance) in population growth. We also show that a full range of likelihood based inference, including estimability diagnostics and model selection, is feasible in this class of models using a data cloning algorithm. We further show through simulation experiments that the hierarchical state-space framework introduced herein efficiently captures the underlying dynamical parameters and spatial abundance distribution. We apply our methodology by analyzing a time series of line-transect distance sampling data for fin whales (Balaenoptera physalus) off the U.S. west coast. Although there were only seven surveys conducted during the study time frame, 1991-2014, our analysis detected presence of strong density regulation and provided reliable estimates of fin whale densities. In summary, we show that the integrative framework developed herein allows ecologists to better infer key population characteristics such as presence of density regulation and spatial variability in a population's intrinsic growth potential.
Journal Article
Fin Whale (Balaenoptera physalus) Migration in the Strait of Gibraltar: Evaluating Maritime Traffic Threats and Conservation Measures
by
Gil-Vera, Paco
,
Anfruns Fernández, Iris
,
Martín-Moreno, Estefania
in
Analysis
,
Aquatic mammals
,
Balaenoptera physalus
2025
The Strait of Gibraltar (SG) is a key biogeographic and ecological corridor connecting the Mediterranean Sea and the Atlantic Ocean, enabling the seasonal migrations of fin whales (Balaenoptera physalus). The objective of this study was to characterize, for the first time, the spatial and temporal exposure of the species to maritime traffic during its migration through the SG, quantifying movement patterns, individual composition, and collision risk to identify critical areas for conservation. Validated observations collected between April 2016 and October 2024, with additional records in January and March 2025, were integrated with EMODnet vessel density layers to assess monthly distributions of sightings, individuals, calves, migration patterns, and behavior. A total of 347 sightings comprising 692 individuals were recorded, revealing predominantly westward movements between June and August. Spatial overlap analyses indicated that the highest exposure occurred both near the Bay of Algeciras/Gibraltar and in the northern half of the Central SG, where cargo ship and tanker traffic coincides with dense migration routes and where injuries have been documented in the field. These findings delineate high-risk areas for fin whales throughout the SG and provide an empirical basis for spatial management measures, including speed reduction zones, adaptive route planning, and the possible designation of the area as a cetacean migration corridor. The proposed measures aim to mitigate collision risk and ensure long-term ecological connectivity between the Mediterranean and the Atlantic.
Journal Article
Return of large fin whale feeding aggregations to historical whaling grounds in the Southern Ocean
2022
Fin whales (
Balaenoptera physalus quoyi
) of the Southern Hemisphere were brought to near extinction by twentieth century industrial whaling. For decades, they had all but disappeared from previously highly frequented feeding grounds in Antarctic waters. Our dedicated surveys now confirm their return to ancestral feeding grounds, gathering at the Antarctic Peninsula in large aggregations to feed. We report on the results of an abundance survey and present the first scientific documentation of large fin whale feeding aggregations at Elephant Island, Antarctica, including the first ever video documentation. We interpret high densities, re-establishment of historical behaviours and the return to ancestral feeding grounds as signs for a recovering population. Recovery of a large whale population has the potential to augment primary productivity at their feeding grounds through the effects of nutrient recycling, known as 'the whale pump'. The recovery of fin whales in that area could thus restore ecosystem functions crucial for atmospheric carbon regulation in the world's most important ocean region for the uptake of anthropogenic CO
2
.
Journal Article
High mortality of blue, humpback and fin whales from modeling of vessel collisions on the U.S. West Coast suggests population impacts and insufficient protection
by
Jahncke, Jaime
,
Rockwood, R. Cotton
,
Calambokidis, John
in
Animal behavior
,
Animals
,
Aquatic mammals
2017
Mortality from collisions with vessels is one of the main human causes of death for large whales. Ship strikes are rarely witnessed and the distribution of strike risk and estimates of mortality remain uncertain at best. We estimated ship strike mortality for blue humpback and fin whales in U.S. West Coast waters using a novel application of a naval encounter model. Mortality estimates from the model were far higher than current minimum estimates derived from stranding records and are closer to extrapolations adjusted for detection probabilities of dead whales. Our most conservative model estimated mortality to be 7.8x, 2.0x and 2.7x the U.S. recommended limit for blue, humpback and fin whales, respectively, suggesting that death from vessel collisions may be a significant impediment to population growth and recovery. Comparing across the study area, the majority of strike mortality occurs in waters off California, from Bodega Bay south and tends to be concentrated in a band approximately 24 Nm (44.5 km) offshore and in designated shipping lanes leading to and from major ports. While some mortality risk exists across nearly all West Coast waters, 74%, 82% and 65% of blue, humpback and fin whale mortality, respectively, occurs in just 10% of the study area, suggesting conservation efforts can be very effective if focused in these waters. Risk is highest in the shipping lanes off San Francisco and Long Beach, but only a fraction of total estimated mortality occurs in these proportionally small areas, making any conservation efforts exclusively within these areas insufficient to address overall strike mortality. We recommend combining shipping lane modifications and re-locations, ship speed reductions and creation of 'Areas to be Avoided' by vessels in ecologically important locations to address this significant source of whale mortality.
Journal Article
North Atlantic Blue and Fin Whales Suspend Their Spring Migration to Forage in Middle Latitudes: Building up Energy Reserves for the Journey?
by
Silva, Mónica A.
,
Santos, Ricardo S.
,
Prieto, Rui
in
Analysis
,
Animal behavior
,
Animal Migration - physiology
2013
The need to balance energy reserves during migration is a critical factor for most long-distance migrants and an important determinant of migratory strategies in birds, insects and land mammals. Large baleen whales migrate annually between foraging and breeding sites, crossing vast ocean areas where food is seldom abundant. How whales respond to the demands and constraints of such long migrations remains unknown. We applied a behaviour discriminating hierarchical state-space model to the satellite tracking data of 12 fin whales and 3 blue whales tagged off the Azores, to investigate their movements, behaviour (transiting and area-restricted search, ARS) and daily activity cycles during the spring migration. Fin and blue whales remained at middle latitudes for prolonged periods, spending most of their time there in ARS behaviour. While near the Azores, fin whale ARS behaviour occurred within a restricted area, with a high degree of overlap among whales. There were noticeable behavioural differences along the migratory pathway of fin whales tracked to higher latitudes: ARS occurred only in the Azores and north of 56°N, whereas in between these areas whales travelled at higher overall speeds while maintaining a nearly direct trajectory. This suggests fin whales may alternate periods of active migration with periods of extended use of specific habitats along the migratory route. ARS behaviour in blue whales occurred over a much wider area as whales slowly progressed northwards. The tracks of these whales terminated still at middle latitudes, before any behavioural switch was detected. Fin whales exhibited behavioural-specific diel rhythms in swimming speed but these varied significantly between geographic areas, possibly due to differences in the day-night cycle across areas. Finally, we show a link between fin whales seen in the Azores and those summering in eastern Greenland-western Iceland along a migratory corridor located in central Atlantic waters.
Journal Article
Acoustic masking in marine ecosystems
by
Ellison, William T.
,
Southall, Brandon L.
,
Hatch, Leila
in
Acoustic noise
,
Animal communication
,
Animal fins
2009
Acoustic masking from anthropogenic noise is increasingly being considered as a threat to marine mammals, particularly low-frequency specialists such as baleen whales. Low-frequency ocean noise has increased in recent decades, often in habitats with seasonally resident populations of marine mammals, raising concerns that noise chronically influences life histories of individuals and populations. In contrast to physical harm from intense anthropogenic sources, which can have acute impacts on individuals, masking from chronic noise sources has been difficult to quantify at individual or population levels, and resulting effects have been even more difficult to assess. This paper presents an analytical paradigm to quantify changes in an animal’s acoustic communication space as a result of spatial, spectral, and temporal changes in background noise, providing a functional definition of communication masking for free-ranging animals and a metric to quantify the potential for communication masking. We use the sonar equation, a combination of modeling and analytical techniques, and measurements from empirical data to calculate time-varying spatial maps of potential communication space for singing fin (Balaenoptera physalus), singing humpback (Megoptera novaeangliae), and calling right (Eubalaena glacialis) whales. These illustrate how the measured loss of communication space as a result of differing levels of noise is converted into a time-varying measure of communication masking. The proposed paradigm and mechanisms for measuring levels of communication masking can be applied to different species, contexts, acoustic habitats and ocean noise scenes to estimate the potential impacts of masking at the individual and population levels.
Journal Article
Synchronous Seasonal Change in Fin Whale Song in the North Pacific
by
Bayless, Alexandra R.
,
Širović, Ana
,
Hildebrand, John A.
in
Acoustics
,
Animal behavior
,
Animal vocalization
2014
Fin whale (Balaenoptera physalus) song consists of down-swept pulses arranged into stereotypic sequences that can be characterized according to the interval between successive pulses. As in blue (B. musculus) and humpback whales (Megaptera novaeangliae), these song sequences may be geographically distinct and may correlate with population boundaries in some regions. We measured inter-pulse intervals of fin whale songs within year-round acoustic datasets collected between 2000 and 2006 in three regions of the eastern North Pacific: Southern California, the Bering Sea, and Hawaii. A distinctive song type that was recorded in all three regions is characterized by singlet and doublet inter-pulse intervals that increase seasonally, then annually reset to the same shorter intervals at the beginning of each season. This song type was recorded in the Bering Sea and off Southern California from September through May and off Hawaii from December through April, with the song interval generally synchronized across all monitoring locations. The broad geographic and seasonal occurrence of this particular fin whale song type may represent a single population broadly distributed throughout the eastern Pacific with no clear seasonal migratory pattern. Previous studies attempting to infer population structure of fin whales in the North Pacific using synchronous individual song samples have been unsuccessful, likely because they did not account for the seasonal lengthening in song intervals observed here.
Journal Article
Characterization of fin whale song off the Western Antarctic Peninsula
2022
Song is produced by a variety of terrestrial and marine animals and is particularly common among baleen whales. Fin whale (
Balaenoptera physalus
) song is comprised of relatively simple 20 Hz pulses produced at regular intervals. The timing of these intervals, in addition to the presence and frequency of overtones, appears to be unique to each population. The purpose of this study was to characterize Western Antarctic Peninsula fin whale song and describe temporal pattern variations in song type and occurrence. Recordings were collected in the area from 2001–2004 and again 2014–2016. One song type was identified with a primary inter-pulse interval (IPI) of approximately 14 s and secondary IPI of 12.5 s. This song occurred in three pattern variants: singlet, doublet, and long triplet. The interval between pulses increased by 1.5 s between recording periods while the frequency of the overtones decreased from 89 Hz to 86 Hz. Song was never recorded in August and while it was recorded at other times in some years, it was consistently present in recordings from April through June across all years. While multiple pattern variants were present each year, singlets were generally the most prevalent variant. Doublets and triplets occurred from February through June, with highest levels of variants in February. In later years the triplet variant presence increased and in 2016 it comprised 53% of recorded song bouts. Further research is needed to understand the reasons why song changes over time and to examine the feasibility of using song to delineate and identify populations.
Journal Article
Revision of fin whale Balaenoptera physalus (Linnaeus, 1758) subspecies using genetics
by
Sherman, Kathryn K.
,
Archer, Frederick I.
,
Brownell, Robert L.
in
Balaenoptera physalus
,
basins
,
data collection
2019
Three subspecies of fin whales (Balaenoptera physalus) are currently recognized, including the northern fin whale (B. p. physalus), the southern fin whale (B. p. quoyi), and the pygmy fin whale (B. p. patachonica). The Northern Hemisphere subspecies encompasses fin whales in both the North Atlantic and North Pacific oceans. A recent analysis of 154 mitogenome sequences of fin whales from these two ocean basins and the Southern Hemisphere suggested that the North Pacific and North Atlantic populations should be treated as different subspecies. Using these mitogenome sequences, in this study, we conduct analyses on a larger mtDNA control region data set, and on 23 single-nucleotide polymorphisms (SNPs) from 144 of the 154 samples in the mitogenome data set. Our results reveal that North Pacific and North Atlantic fin whales can be correctly assigned to their ocean basin with 99% accuracy. Results of the SNP analysis indicate a correct classification rate of 95%, very low rates of gene flow among ocean basins, and that distinct mitogenome matrilines in the North Pacific are interbreeding. These results indicate that North Pacific fin whales should be recognized as a separate subspecies, with the name B. p. velifera Cope in Scammon 1869 as the oldest available name.
Journal Article