Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
389 result(s) for "Barium zirconates"
Sort by:
Faradaic efficiency in protonic-ceramic electrolysis cells
Proton-conducting ceramics (e.g. doped barium zirconates or cerates) are typically mixed ionic-electronic conductors (MIECs). The electronic conduction, typically in the form of positively charged small polarons or electron holes, leads to ‘electronic leakage.’ In an ideal steam-electrolysis cell, one gas-phase H 2 molecule is produced from every two electrons delivered from an external power source. In other words, such ideal behavior achieves 100% faradaic efficiency. However, the electronic flux associated with MIEC membranes contributes to reduced faradaic efficiency. The present paper develops a model that predicts the behavior of faradaic efficiency as a function of electrolysis-cell operating conditions. Although the model framework is more general, the paper focuses on the behavior of a cell based upon a BaCe 0.7 Zr 0.1 Y 0.1 Yb 0.1 O 3 − δ (BCZYYb) membrane. The study predicts the effects of operating conditions, including temperature, pressure, and gas compositions.
Laser-Based Crystallization of Chemical Solution Deposited Proton-Conducting Thin Films
This work investigates the laser-based solid-phase crystallization of wet-chemically deposited BZY (yttrium doped barium zirconate) thin films on metallic substrates. For this purpose, amorphous BZY thin films are deposited on nickel-based alloy substrates using spin coating and are then annealed using laser radiation. Different laser intensities and scanning velocities are investigated. X-ray diffraction analysis of the processed thin films shows an initial increase in crystallinity with increasing laser intensity. A further increase in laser intensity leads to the formation of secondary phases and ultimately to the melting of the substrate material. Complete crystallization of the thin films without the formation of secondary phases is achieved by applying scanning velocities of vS ≥ 500 mm/s. Scanning electron microscopy images of selected samples show that, especially at higher scanning velocities, crack formation can occur as a result of the annealing. In summary, laser annealing is a promising approach for the thermal post-treatment of BZY thin films in applications in metal-supported solid oxide fuel cells.
Synthesis and Characterization of Sol–Gelled Barium Zirconate as Novel MTA Radiopacifiers
Barium zirconate (BaZrO3, BZO), which exhibits superior mechanical, thermal, and chemical stability, has been widely used in many applications. In dentistry, BZO is used as a radiopacifier in mineral trioxide aggregates (MTAs) for endodontic filling applications. In the present study, BZO was prepared using the sol–gel process, followed by calcination at 700–1000 °C. The calcined BZO powders were investigated using X-ray diffraction and scanning electron microscopy. Thereafter, MTA-like cements with the addition of calcined BZO powder were evaluated to determine the optimal composition based on radiopacity, diametral tensile strength (DTS), and setting times. The experimental results showed that calcined BZO exhibited a majority BZO phase with minor zirconia crystals. The crystallinity, the percentage, and the average crystalline size of BZO increased with the increasing calcination temperature. The optimal MTA-like cement was obtained by adding 20% of the 700 °C-calcined BZO powder. The initial and final setting times were 25 and 32 min, respectively. They were significantly shorter than those (70 and 56 min, respectively) prepared with commercial BZO powder. It exhibited a radiopacity of 3.60 ± 0.22 mmAl and a DTS of 3.02 ± 0.18 MPa. After 28 days of simulated oral environment storage, the radiopacity and DTS decreased to 3.36 ± 0.53 mmAl and 2.84 ± 0.27 MPa, respectively. This suggests that 700 °C-calcined BZO powder has potential as a novel radiopacifier for MTAs.
Pressure-Dependent Structure of BaZrO3 Crystals as Determined by Raman Spectroscopy
The structure of dielectric perovskite BaZrO3, long known to be cubic at room temperature without any structural phase transition with variation in temperature, has been recently disputed to have different ground state structures with lower symmetries involving octahedra rotation. Pressure-dependent Raman scattering measurements can identify the hierarchy of energetically-adjacent polymorphs, helping in turn to understand its ground state structure at atmospheric pressure. Here, the Raman scattering spectra of high-quality BaZrO3 single crystals grown by the optical floating zone method are investigated in a pressure range from 1 atm to 42 GPa. First, based on the analyses of the infrared and Raman spectra measured at atmospheric pressure, it was found that all the observed vibrational modes could be assigned according to the cubic Pm3¯m structure. In addition, by applying pressure, two structural phase transitions were found at 8.4 and 19.2 GPa, one from the cubic to the rhombohedral R3¯c phase and the other from the rhombohedral to the tetragonal I4/mcm phase. Based on the two pressure-induced structural phase transitions, the true ground state structure of BaZrO3 at room temperature and ambient pressure was corroborated to be cubic while the rhombohedral phase was the closest second.
Energy Conversion Capacity of Barium Zirconate Titanate
In this study, we investigated the effect of zirconium content on lead-free barium zirconate titanate (BZT) (Ba(ZrxTi1−x)O3, with x = 0.00, 0.01, 0.03, 0.05, and 0.08), which was prepared by the sol–gel method. A single-phase perovskite BZT was obtained under calcination and sintering conditions at 1100 °C and 1300 °C. Ferroelectric measurements revealed that the Curie temperature of BaTiO3 was 399 K, and the transition temperature decreased with increasing zirconium content. At the Curie temperature, Ba(Zr0.03Ti0.97)O3 with a dielectric constant of 19,600 showed the best performance in converting supplied mechanical vibration into electrical power. The experiments focused on piezoelectric activity at a low vibrating frequency, and the output power that dissipated from the BZT system at 15 Hz was 2.47 nW (30 MΩ). The prepared lead-free sol–gel BZT is promising for energy-harvesting applications considering that the normal frequencies of ambient vibration sources are less than 100 Hz.
Interaction mechanism between BaZrO3/Y2O3 refractory and Ti2Ni alloy melts
The titanium alloys with highly chemical activity require stable crucible refractories that can withstand the erosion of alloy melts. The phase composition and microstructure are crucial factors that affect the stability of the refractory crucible. The effect of Y 2 O 3 on the composition and microstructure of BaZrO 3 crucible was systematically investigated, and the improved mechanism of the stability of BaZrO 3 /Y 2 O 3 crucible was clarified in comparison with the BaZrO 3 crucible. The results showed that the erosion layer thickness of the BaZrO 3 /Y 2 O 3 crucible was only 63 μm, which was far less than that in the BaZrO 3 crucible (485 μm), and the erosion layer in the BaZrO 3 /Y 2 O 3 crucible also exhibited a higher density than that in the BaZrO 3 crucible. During the sintering, Y 2 O 3 could improve the densification of the BaZrO 3 crucible due to the solid solution effect between Y 2 O 3 and ZrO 2 , which also caused the evaporation of BaO, resulting in the generation of a Y 2 O 3 (ZrO 2 ) film on the surface of the crucible. Furthermore, the Y 2 O 3 (ZrO 2 ) had higher thermodynamic stability than Y 2 O 3 , confirming that the BaZrO 3 /Y 2 O 3 crucible with high density exhibited a superior erosion resistance to titanium alloys. This dual-phase structure provides a strategy to design a long-life and stable refractory for melting titanium alloys.
Exploring Proton Pair Motion Away from the Global Proton–Tuple Energy Minimum in Yttrium-Doped Barium Zirconate
Yttrium-doped barium zirconate is one of the fastest solid-state proton conductors. While previous studies suggest that proton–tuples move as pairs in yttrium-doped barium zirconate, a systematic catalog of possible close proton–tuple moves is missing. Such a catalog is essential to simulating dual proton conduction effects. Density functional theory with the Perdew–Burke–Ernzerhof functional is utilized to obtain the total electronic energy for each proton–tuple. The conjugate gradient and nudged elastic band methods are used to find the minima and transition states for proton–tuple motion. In the lowest-energy configuration, protons are in close proximity to each other and the dopant, significantly affecting the backbone structure. The map of moves away from the global minimum proton–tuple shows that the most critical move for long-range proton conduction is a rotation with a barrier range of 0.31–0.41 eV when the two protons are in close proximity.
Reactive Magnetron Sputtering for Y-Doped Barium Zirconate Electrolyte Deposition in a Complete Protonic Ceramic Fuel Cell
Yttrium-doped barium zirconate is a commonly used electrolyte material for Protonic Ceramic Fuel Cells (PCFC) due to its high protonic conductivity and high chemical stability. However, it is also known for its poor sinterability and poor grain boundary conductivity. In this work, in response to these issues, reactive magnetron sputtering was strategically chosen as the electrolyte deposition technique. This method allows the creation of a 4 µm tick electrolyte with a dense columnar microstructure. Notably, this technique is not widely utilized in PCFC fabrication. In this study, a complete cell is elaborated without exceeding a sintering temperature of 1350 °C. Tape casting is used for the anode, and spray coating is used for the cathode. The material of interest is yttrium-doped barium zirconate with the formula BaZr0.8Y0.2O3−δ (BZY). The anode consists of a NiO-BZY cermet, while the cathode is composed of BZY and Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSFC) in a 50:50 weight ratio. The electrochemical impedance spectroscopy analysis reveals a global polarization resistance of 0.3 Ω cm2, indicating highly efficient interfaces between electrolytes and electrodes.
Exploring the Potential of Cold Sintering for Proton-Conducting Ceramics: A Review
Proton-conducting ceramic materials have emerged as effective candidates for improving the performance of solid oxide cells (SOCs) and electrolyzers (SOEs) at intermediate temperatures. BaCeO3 and BaZrO3 perovskites doped with rare-earth elements such as Y2O3 (BCZY) are well known for their high proton conductivity, low operating temperature, and chemical stability, which lead to SOCs’ improved performance. However, the high sintering temperature and extended processing time needed to obtain dense BCZY-type electrolytes (typically > 1350 °C) to be used as SOC electrolytes can cause severe barium evaporation, altering the stoichiometry of the system and consequently reducing the performance of the final device. The cold sintering process (CSP) is a novel sintering technique that allows a drastic reduction in the sintering temperature needed to obtain dense ceramics. Using the CSP, materials can be sintered in a short time using an appropriate amount of a liquid phase at temperatures < 300 °C under a few hundred MPa of uniaxial pressure. For these reasons, cold sintering is considered one of the most promising ways to obtain ceramic proton conductors in mild conditions. This review aims to collect novel insights into the application of the CSP with a focus on BCZY-type materials, highlighting the opportunities and challenges and giving a vision of future trends and perspectives.
Quantitative evaluation of biaxial compressive strain and its impact on proton conduction and diffusion in yttrium-doped barium zirconate epitaxial thin films
Proton-conducting oxides, including 20 mol% yttrium-doped BaZrO 3 (BZY20), have attracted considerable attention as electrolytes for environmentally friendly electrochemical cells, such as proton ceramic fuel cells (PCFCs) and proton-conducting solid oxide cells. These oxides exhibit fast proton conduction due to the complex physicochemical phenomena of hydration, chemical lattice expansion, proton migration, proton trapping, and local distortion. Using a proton-conducting oxide as an electrolyte film in electrochemical devices introduces an interface, which thermally and chemically generates mechanical strain. Here, we briefly review the current state of research into proton-conducting oxides in bulk samples and films used in electrochemical devices. We fabricated 18 and 500 nm thick 20 mol% BZY20 epitaxial films on (001) Nb-doped SrTiO 3 single-crystal substrates to form a model interface between proton-conductive and non-proton-conductive materials, using pulsed laser deposition, and quantified the mechanical strain, proton concentration, proton conductivity, and diffusivity using thin-film x-ray diffractometry, thermogravimetry, secondary ion mass spectrometry, and AC impedance spectroscopy. Compressive strains of −2.1% and −0.85% were measured for the 18 and 500 nm thick films, respectively, and these strains reduced both the proton conduction and diffusion by five and one orders of magnitude, respectively, at 375 °C. Analysis based on a simple trapping model revealed that the decrease in proton conduction results from the slower diffusion of mobile protons with a negligible change in the proton trapping contribution. The model shows that the high ohmic resistance reported for a high-performance PCFC with a power density of 740 mW cm −2 at 600 °C can be solely explained by the estimated compressive strain in the cells. This study shows that minimizing biaxial compressive strain by appropriate choices of the electrolyte–electrode combination and fabrication process is important for maximizing the performance of electrochemical cells.