Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
10,751 result(s) for "Basal ganglia"
Sort by:
Trial of Early Minimally Invasive Removal of Intracerebral Hemorrhage
In a trial of minimally invasive cerebral hematoma removal within 24 hours after onset of hemorrhage, functional outcomes were better with surgery than with medical treatment, particularly among patients with lobar hemorrhages.
The effects of etidronate on brain calcifications in Fahr’s disease or syndrome: rationale and design of the randomised, placebo-controlled, double-blind CALCIFADE trial
Background Fahr’s disease and syndrome are rare disorders leading to calcification of the small arteries in the basal ganglia of the brain, resulting in a wide range of symptoms comprising cognitive decline, movement disorders and neuropsychiatric symptoms. No disease-modifying therapies are available. Studies have shown the potential of treatment of ectopic vascular calcifications with bisphosphonates. This paper describes the rationale and design of the CALCIFADE trial which evaluates the effects of etidronate in patients with Fahr’s disease or syndrome. Methods The CALCIFADE trial is a randomised, placebo-controlled, double-blind trial which evaluates the effects of etidronate 20 mg/kg during 12 months follow-up in patients aged ≥ 18 years with Fahr’s disease or syndrome. Etidronate and placebo will be administered in capsules daily for two weeks on followed by ten weeks off. The study will be conducted at the outpatient clinic of the University Medical Center Utrecht, the Netherlands. The primary endpoint is the change in cognitive functioning after 12 months of treatment. Secondary endpoints are the change in mobility, neuropsychiatric symptoms, volume of brain calcifications, dependence in activities of daily living, and quality of life. Results Patient recruitment started in April 2023. Results are expected in 2026 and will be disseminated through peer-reviewed journals as well as presentations at national and international conferences. Conclusions Fahr’s disease and syndrome are slowly progressive disorders with a negative impact on a variety of health outcomes. Etidronate might be a new promising treatment for patients with Fahr’s disease or syndrome. Trial registration ClinicalTrials.gov, NCT05662111. Registered 22 December 2022, https://clinicaltrials.gov/ct2/show/NCT01585402 .
Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry
Control of parkinsonian behaviour The basal ganglia are a collection of interconnected brain areas thought to be crucial for motor planning, sequencing and execution. It has long been thought that motor control is achieved through the balanced activity of two parallel and anatomically distinct pathways, acting on the basal ganglia with opposing effects, but these pathways have never been functionally verified. Kravitz et al . have tested this hypothesis directly using optogenetic activation of different populations of mouse striatal neurons, and they both trace functional connectivity and demonstrate opposing effects on motor behaviour. Selective activation of the 'direct' pathway increased locomotion and rescued motor deficits in a parkinsonian model, whereas activation of the 'indirect' pathway suppressed motor behaviour. It has long been thought that motor control is achieved through the balanced activity of two distinct pathways through the basal ganglia that have opposing effects, but this has never been functionally verified. These authors directly test this hypothesis with optogenetic activation of different populations of mouse striatal neurons, and not only trace functional connectivity but demonstrate opposing effects on motor behaviour in a parkinsonian model. Neural circuits of the basal ganglia are critical for motor planning and action selection 1 , 2 , 3 . Two parallel basal ganglia pathways have been described 4 , and have been proposed to exert opposing influences on motor function 5 , 6 , 7 . According to this classical model, activation of the ‘direct’ pathway facilitates movement and activation of the ‘indirect’ pathway inhibits movement. However, more recent anatomical and functional evidence has called into question the validity of this hypothesis 8 , 9 , 10 . Because this model has never been empirically tested, the specific function of these circuits in behaving animals remains unknown. Here we report direct activation of basal ganglia circuitry in vivo , using optogenetic control 11 , 12 , 13 , 14 of direct- and indirect-pathway medium spiny projection neurons (MSNs), achieved through Cre-dependent viral expression of channelrhodopsin-2 in the striatum of bacterial artificial chromosome transgenic mice expressing Cre recombinase under control of regulatory elements for the dopamine D1 or D2 receptor. Bilateral excitation of indirect-pathway MSNs elicited a parkinsonian state, distinguished by increased freezing, bradykinesia and decreased locomotor initiations. In contrast, activation of direct-pathway MSNs reduced freezing and increased locomotion. In a mouse model of Parkinson’s disease, direct-pathway activation completely rescued deficits in freezing, bradykinesia and locomotor initiation. Taken together, our findings establish a critical role for basal ganglia circuitry in the bidirectional regulation of motor behaviour and indicate that modulation of direct-pathway circuitry may represent an effective therapeutic strategy for ameliorating parkinsonian motor deficits.
Modulation of dopamine tone induces frequency shifts in cortico-basal ganglia beta oscillations
Βeta oscillatory activity (human: 13–35 Hz; primate: 8–24 Hz) is pervasive within the cortex and basal ganglia. Studies in Parkinson’s disease patients and animal models suggest that beta-power increases with dopamine depletion. However, the exact relationship between oscillatory power, frequency and dopamine tone remains unclear. We recorded neural activity in the cortex and basal ganglia of healthy non-human primates while acutely and chronically up- and down-modulating dopamine levels. We assessed changes in beta oscillations in patients with Parkinson’s following acute and chronic changes in dopamine tone. Here we show beta oscillation frequency is strongly coupled with dopamine tone in both monkeys and humans. Power, coherence between single-units and local field potentials (LFP), spike-LFP phase-locking, and phase-amplitude coupling are not systematically regulated by dopamine levels. These results demonstrate that beta frequency is a key property of pathological oscillations in cortical and basal ganglia networks. Dopamine tone modulation generates changes in beta oscillation physiology. Here the authors show beta frequency, and not power, coherence, phase-locking, or PAC is monotonically linked to dopamine tone and is likely the key property of pathological oscillations in cortical and basal ganglia networks.
Basal ganglia calcifications (Fahr’s syndrome): related conditions and clinical features
Basal ganglia calcifications could be incidental findings up to 20% of asymptomatic patients undergoing CT or MRI scan. The presence of neuropsychiatric symptoms associated with bilateral basal ganglia calcifications (which could occur in other peculiar brain structures, such as dentate nuclei) identifies a clinical picture defined as Fahr’s Disease. This denomination mainly refers to idiopathic forms in which no metabolic or other underlying causes are identified. Recently, mutations in four different genes (SLC20A2, PDGFRB, PDGFB, and XPR1) were identified, together with novel mutations in the Myogenic Regulating Glycosylase gene, causing the occurrence of movement disorders, cognitive decline, and psychiatric symptoms. On the other hand, secondary forms, also identified as Fahr’s syndrome, have been associated with different conditions: endocrine abnormalities of PTH, such as hypoparathyroidism, other genetically determined conditions, brain infections, or toxic exposure. The underlying pathophysiology seems to be related to an abnormal calcium/phosphorus homeostasis and transportation and alteration of the blood-brain barrier.
Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia
The arthropod central complex and vertebrate basal ganglia derive from embryonic basal forebrain lineages that are specified by an evolutionarily conserved genetic program leading to interconnected neuropils and nuclei that populate the midline of the forebrain-midbrain boundary region. In the substructures of both the central complex and basal ganglia, network connectivity and neuronal activity mediate control mechanisms in which inhibitory (GABAergic) and modulatory (dopaminergic) circuits facilitate the regulation and release of adaptive behaviors. Both basal ganglia and central complex dysfunction result in behavioral defects including motor abnormalities, impaired memory formation, attention deficits, affective disorders, and sleep disturbances. The observed multitude of similarities suggests deep homology of arthropod central complex and vertebrate basal ganglia circuitries underlying the selection and maintenance of behavioral actions.
The mouse cortico–basal ganglia–thalamic network
The cortico–basal ganglia–thalamo–cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative 1 – 4 . Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex 5 . Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico–basal ganglia–thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico–basal ganglia–thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop. Mesoscale connectomic mapping of the cortico–basal ganglia–thalamic network reveals key architectural and information processing features.
Circuits and functions of the lateral habenula in health and in disease
The past decade has witnessed exponentially growing interest in the lateral habenula (LHb) owing to new discoveries relating to its critical role in regulating negatively motivated behaviour and its implication in major depression. The LHb, sometimes referred to as the brain’s ‘antireward centre’, receives inputs from diverse limbic forebrain and basal ganglia structures, and targets essentially all midbrain neuromodulatory systems, including the noradrenergic, serotonergic and dopaminergic systems. Its unique anatomical position enables the LHb to act as a hub that integrates value-based, sensory and experience-dependent information to regulate various motivational, cognitive and motor processes. Dysfunction of the LHb may contribute to the pathophysiology of several psychiatric disorders, especially major depression. Recently, exciting progress has been made in identifying the molecular and cellular mechanisms in the LHb that underlie negative emotional state in animal models of drug withdrawal and major depression. A future challenge is to translate these advances into effective clinical treatments.The lateral habenula (LHb) has received increasing attention in part because dysfunction of this region may play a part in several psychiatric disorders, notably depression. In this Review, Hu et al. examine the neural circuits, physiological functions and potential pathophysiological roles of the LHb.
The basal ganglia and the cerebellum: nodes in an integrated network
The basal ganglia and the cerebellum are considered to be distinct subcortical systems that perform unique functional operations. The outputs of the basal ganglia and the cerebellum influence many of the same cortical areas but do so by projecting to distinct thalamic nuclei. As a consequence, the two subcortical systems were thought to be independent and to communicate only at the level of the cerebral cortex. Here, we review recent data showing that the basal ganglia and the cerebellum are interconnected at the subcortical level. The subthalamic nucleus in the basal ganglia is the source of a dense disynaptic projection to the cerebellar cortex. Similarly, the dentate nucleus in the cerebellum is the source of a dense disynaptic projection to the striatum. These observations lead to a new functional perspective that the basal ganglia, the cerebellum and the cerebral cortex form an integrated network. This network is topographically organized so that the motor, cognitive and affective territories of each node in the network are interconnected. This perspective explains how synaptic modifications or abnormal activity at one node can have network-wide effects. A future challenge is to define how the unique learning mechanisms at each network node interact to improve performance.
Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences
The authors trained mice to perform rapid action sequences while recording from neurons in the direct and indirect basal ganglia pathways. In addition to neurons whose activity reflected the start or stop of a sequence, they identified neurons that displayed sustained activity or inhibition throughout an entire action sequence. Chunking allows the brain to efficiently organize memories and actions. Although basal ganglia circuits have been implicated in action chunking, little is known about how individual elements are concatenated into a behavioral sequence at the neural level. Using a task in which mice learned rapid action sequences, we uncovered neuronal activity encoding entire sequences as single actions in basal ganglia circuits. In addition to neurons with activity related to the start/stop activity signaling sequence parsing, we found neurons displaying inhibited or sustained activity throughout the execution of an entire sequence. This sustained activity covaried with the rate of execution of individual sequence elements, consistent with motor concatenation. Direct and indirect pathways of basal ganglia were concomitantly active during sequence initiation, but behaved differently during sequence performance, revealing a more complex functional organization of these circuits than previously postulated. These results have important implications for understanding the functional organization of basal ganglia during the learning and execution of action sequences.