Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
11,973 result(s) for "Basis functions"
Sort by:
An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions
This paper presents a compact and efficient 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions (RBFs), which is applied to minimize the compliance of a two-dimensional linear elastic structure. This parameterized level set method using radial basis functions can maintain a relatively smooth level set function with an approximate re-initialization scheme during the optimization process. It also has less dependency on initial designs due to its capability in nucleation of new holes inside the material domain. The MATLAB code and simple modifications are explained in detail with numerical examples. The 88-line code included in the appendix is intended for educational purposes.
Stock prediction using deep learning
Stock market is considered chaotic, complex, volatile and dynamic. Undoubtedly, its prediction is one of the most challenging tasks in time series forecasting. Moreover existing Artificial Neural Network (ANN) approaches fail to provide encouraging results. Meanwhile advances in machine learning have presented favourable results for speech recognition, image classification and language processing. Methods applied in digital signal processing can be applied to stock data as both are time series. Similarly, learning outcome of this paper can be applied to speech time series data. Deep learning for stock prediction has been introduced in this paper and its performance is evaluated on Google stock price multimedia data (chart) from NASDAQ. The objective of this paper is to demonstrate that deep learning can improve stock market forecasting accuracy. For this, (2D) 2 PCA + Deep Neural Network (DNN) method is compared with state of the art method 2-Directional 2-Dimensional Principal Component Analysis (2D) 2 PCA + Radial Basis Function Neural Network (RBFNN). It is found that the proposed method is performing better than the existing method RBFNN with an improved accuracy of 4.8% for Hit Rate with a window size of 20. Also the results of the proposed model are compared with the Recurrent Neural Network (RNN) and it is found that the accuracy for Hit Rate is improved by 15.6%. The correlation coefficient between the actual and predicted return for DNN is 17.1% more than RBFNN and it is 43.4% better than RNN.
Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism
Pattern recognition is the task of choosing the pertinent and descriptive features that best describes the target concept during feature selection (FS). Choosing such descriptive features becomes a daunting task in large-volume datasets which have high dimensionality. In such cases, selecting the discriminative features with better classification accuracy is tedious. To overcome this issue, in recent times, many search heuristics have been used to select the best features from these large-volume datasets. In this work, a sine–cosine algorithm (SCA) with Elitism strategy and new best solution update mechanism is proposed to select best features/attributes to improve the classification accuracy. Improved version of SCA is named as improved sine–cosine algorithm (ISCA). Wrapper-based FS approach is used. ELM with radial basis function kernel is used as the learning algorithm. For experimentation, ISCA is tested with ten benchmark datasets. Experimental results have proved the efficiency of ISCA in achieving better classification performance along with less number of features. Both computational and time complexity has been handled by this algorithm in an expedite manner. The potency of this algorithm is proved by comparing its results with three well-known meta-heuristics such as GA, PSO and basic SCA. Finally, it can be seen that pattern classification using ISCA has been commendable in achieving better classification performance.
Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection–diffusion equations
The present article develops a semi-discrete numerical scheme to solve the time-fractional stochastic advection–diffusion equations. This method, which is based on finite difference scheme and radial basis functions (RBFs) interpolation, is applied to convert the solution of time-fractional stochastic advection–diffusion equations to the solution of a linear system of algebraic equations. The mechanism of this method is such that time-fractional stochastic advection–diffusion equation is first transformed into elliptic stochastic differential equations by using finite difference scheme. Then meshfree method based on RBFs has been used to approximate the resulting equation. In other words, the approximate solution of time-fractional stochastic advection–diffusion equation is achieved with discrete the domain in the t-direction by finite difference method and approximating the unknown function in the x-direction by generalized inverse multiquadrics RBFs. In this method, the noise terms are directly simulated at the collocation points in each time step and it is the most important advantage of the suggested approach. Stability and convergence of the scheme are established. Finally, some test problems are included to confirm the accuracy and efficiency of the new approach.
Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia
The management of river water quality is one the most significant environmental challenges. Water quality index (WQI) describes several water quality variables at a certain aquatic environment and time. Classically, WQI is commonly computed using the traditional methods which involved lengthy computation, consume timing and occasionally associated with accidental errors during subindex calculation. Thus, providing an accurate prediction model for WQI is highly required. Recently, the artificial neural networks (ANNs) have been examined for similar prediction applications and exhibited a remarkable ability to capture the nonlinearity pattern between predictors and predictand. In the current research, two different ANN algorithms, namely radial basis function neural network (RBFNN) and back propagation neural networks models, have been applied to examine and mimic the relationship of WQI with the water quality variables in a tropical environment (Malaysia). The input variables categorized into two different architectures and have been inspected. In addition, comprehensive analysis for the performance evaluation and the sensitivity analysis of the variables have been conducted. The results achieved are positively promising with high performance accuracy belonging to RBFNN model for both scenarios. Furthermore, the proposed approach offers an effective alternative to compute and predict WQI, to the fact that WQI manual calculation methods involved lengthy computations, transformations, use of various subindex formulae for each value of the constituent water quality variables, and consuming time.
Adaptive Basis Function Method for the Detection of an Undersurface Magnetic Anomaly Target
The orthogonal basis functions (OBFs) method is a prevailing choice for the detection of undersurface magnetic anomaly targets. However, it requires the detecting platform or target to move uniformly along a straight path. To circumvent the restrictions, a new adaptive basis functions (ABFs) approach is proposed in this article. It permits the detection platform to search for a possible target at different speeds along any course. The ABFs are constructed using the real-time data of the onboard triaxial fluxgate, GPS module, and attitude gyro. Based on the pseudo-energy of an apparent target signal, the constant false alarm rate (CFAR) method is employed to judge whether a target is present. Moreover, by defining the pixel as a relative possibility for a target at a geographic location, a magnetic anomaly target imaging scheme is introduced by displaying the pixels onto the searching area. On-site experimental data are utilized to demonstrate the proposed approach. Compared with the traditional OBFs method, the present ABFs approach can substantially improve the detection possibility and reduce false alarms.
A Comparison Study of Kernel Functions in the Support Vector Machine and Its Application for Termite Detection
Termites are the most destructive pests and their attacks significantly impact the quality of wooden buildings. Due to their cryptic behavior, it is rarely apparent from visual observation that a termite infestation is active and that wood damage is occurring. Based on the phenomenon of acoustic signals generated by termites when attacking wood, we proposed a practical framework to detect termites nondestructively, i.e., by using the acoustic signals extraction. This method has the pros to maintain the quality of wood products and prevent higher termite attacks. In this work, we inserted 220 subterranean termites into a pine wood for feeding activity and monitored its acoustic signal. The two acoustic features (i.e., energy and entropy) derived from the time domain were used for this study’s analysis. Furthermore, the support vector machine (SVM) algorithm with different kernel functions (i.e., linear, radial basis function, sigmoid and polynomial) were employed to recognize the termites’ acoustic signal. In addition, the area under a receiver operating characteristic curve (AUC) was also adopted to analyze and improve the performance results. Based on the numerical analysis, the SVM with polynomial kernel function achieves the best classification accuracy of 0.9188.
Training radial basis function networks using biogeography-based optimizer
Training artificial neural networks is considered as one of the most challenging machine learning problems. This is mainly due to the presence of a large number of solutions and changes in the search space for different datasets. Conventional training techniques mostly suffer from local optima stagnation and degraded convergence, which make them impractical for datasets with many features. The literature shows that stochastic population-based optimization techniques suit this problem better and are reliably alternative because of high local optima avoidance and flexibility. For the first time, this work proposes a new learning mechanism for radial basis function networks based on biogeography-based optimizer as one of the most well-regarded optimizers in the literature. To prove the efficacy of the proposed methodology, it is employed to solve 12 well-known datasets and compared to 11 current training algorithms including gradient-based and stochastic approaches. The paper considers changing the number of neurons and investigating the performance of algorithms on radial basis function networks with different number of parameters as well. A statistical test is also conducted to judge about the significance of the results. The results show that the biogeography-based optimizer trainer is able to substantially outperform the current training algorithms on all datasets in terms of classification accuracy, speed of convergence, and entrapment in local optima. In addition, the comparison of trainers on radial basis function networks with different neurons size reveal that the biogeography-based optimizer trainer is able to train radial basis function networks with different number of structural parameters effectively.
Approximation of Bivariate Functions by Generalized Wendland Radial Basis Functions
In this work, we deal with two approximation problems in a finite-dimensional generalized Wendland space of compactly supported radial basis functions. Namely, we present an interpolation method and a smoothing variational method in this space. Next, the theory of the presented method is justified by proving the corresponding convergence result. Likewise, to illustrate this method, some graphical and numerical examples are presented in R2, and a comparison with another work is analyzed.
Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS
In this paper, an ensemble method, which demonstrated efficiency in GIS based flood modeling, was used to create flood probability indices for the Damansara River catchment in Malaysia. To estimate flood probability, the frequency ratio (FR) approach was combined with support vector machine (SVM) using a radial basis function kernel. Thirteen flood conditioning parameters, namely, altitude, aspect, slope, curvature, stream power index, topographic wetness index, sediment transport index, topographic roughness index, distance from river, geology, soil, surface runoff, and land use/cover (LULC), were selected. Each class of conditioning factor was weighted using the FR approach and entered as input for SVM modeling to optimize all the parameters. The flood hazard map was produced by combining the flood probability map with flood-triggering factors such as; averaged daily rainfall and flood inundation depth. Subsequently, the hydraulic 2D high-resolution sub-grid model (HRS) was applied to estimate the flood inundation depth. Furthermore, vulnerability weights were assigned to each element at risk based on their importance. Finally flood risk map was generated. The results of this research demonstrated that the proposed approach would be effective for flood risk management in the study area along the expressway and could be easily replicated in other areas.