Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
2,686
result(s) for
"Bayesian statistical decision theory"
Sort by:
The Theory That Would Not Die
by
Sharon Bertsch Mcgrayne
in
Bayesian statistical decision theory
,
Bayesian statistical decision theory -- History
,
History
2011
Bayes' rule appears to be a straightforward, one-line theorem: by updating our initial beliefs with objective new information, we get a new and improved belief. To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.
In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years-at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.
Drawing on primary source material and interviews with statisticians and other scientists,The Theory That Would Not Dieis the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.
Bayesian statistics the fun way : understanding statistics and probability with Star Wars, LEGO, and Rubber Ducks
\"An introduction to Bayesian statistics with simple and pop culture-based explanations. Topics covered include measuring your own uncertainty in a belief, applying Bayes' theorem, and calculating distributions\"-- Provided by publisher.
Probabilistic methods for financial and marketing informatics
by
Neapolitan, Richard E.
,
Jiang, Xia
in
Bayes-Statistik
,
Bayesian method
,
Bayesian statistical decision theory
2007,2010
Probabilistic Methods for Financial and Marketing Informatics aims to provide students with insights and a guide explaining how to apply probabilistic reasoning to business problems. Rather than dwelling on rigor, algorithms, and proofs of theorems, the authors concentrate on showing examples and using the software package Netica to represent and solve problems.The book contains unique coverage of probabilistic reasoning topics applied to business problems, including marketing, banking, operations management, and finance. It shares insights about when and why probabilistic methods can and cannot be used effectively.This book is recommended for all R&D professionals and students who are involved with industrial informatics, that is, applying the methodologies of computer science and engineering to business or industry information. This includes computer science and other professionals in the data management and data mining field whose interests are business and marketing information in general, and who want to apply AI and probabilistic methods to their problems in order to better predict how well a product or service will do in a particular market, for instance.Typical fields where this technology is used are in advertising, venture capital decision making, operational risk measurement in any industry, credit scoring, and investment science. Unique coverage of probabilistic reasoning topics applied to business problems, including marketing, banking, operations management, and financeShares insights about when and why probabilistic methods can and cannot be used effectivelyComplete review of Bayesian networks and probabilistic methods for those IT professionals new to informatics.
Bayesian inference on complicated data
Due to great applications in various fields, such as social science, biomedicine, genomics, and signal processing, and the improvement of computing ability, Bayesian inference has made substantial developments for analyzing complicated data. This book introduces key ideas of Bayesian sampling methods, Bayesian estimation, and selection of the prior.
Bayesian networks for probabilistic inference and decision analysis in forensic science
by
Taroni, Franco
in
Bayesian statistical decision theory
,
Bayesian statistical decision theory -- Graphic methods
,
Forensic sciences
2014
Bayesian Networks
\"This book should have a place on the bookshelf of every forensic scientist who cares about the science of evidence interpretation.\"
Dr. Ian Evett, Principal Forensic Services Ltd, London, UK
Bayesian Networks
for Probabilistic Inference and Decision Analysis in Forensic Science
Second Edition
Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates diffculties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system.
Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks.
Includes self-contained introductions to probability and decision theory. Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. Features implementation of the methodology with reference to commercial and academically available software. Presents standard networks and their extensions that can be easily implemented and that can assist in the reader's own analysis of real cases. Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. Includes a foreword by Ian Evett.
The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.
Rational decisions
2009,2008,2011
It is widely held that Bayesian decision theory is the final word on how a rational person should make decisions. However, Leonard Savage--the inventor of Bayesian decision theory--argued that it would be ridiculous to use his theory outside the kind of small world in which it is always possible to \"look before you leap.\" If taken seriously, this view makes Bayesian decision theory inappropriate for the large worlds of scientific discovery and macroeconomic enterprise. When is it correct to use Bayesian decision theory--and when does it need to be modified? Using a minimum of mathematics, Rational Decisions clearly explains the foundations of Bayesian decision theory and shows why Savage restricted the theory's application to small worlds.
The doomsday calculation : how an equation that predicts the future is transforming everything we know about life and the universe
\"Thomas Bayes devised a theorem that allowed him to assign probabilities to events that had never happened before, and it is being used in contemporary thought to answer questions about human existence.\" --Provided by publisher.
Probabilistic Reasoning in Multiagent Systems
by
Xiang, Yang
in
Bayesian statistical decision theory
,
Bayesian statistical decision theory -- Data processing
,
Data processing
2002
This 2002 book investigates the opportunities in building intelligent decision support systems offered by multi-agent distributed probabilistic reasoning. Probabilistic reasoning with graphical models, also known as Bayesian networks or belief networks, has become increasingly an active field of research and practice in artificial intelligence, operations research and statistics. The success of this technique in modeling intelligent decision support systems under the centralized and single-agent paradigm has been striking. Yang Xiang extends graphical dependence models to the distributed and multi-agent paradigm. He identifies the major technical challenges involved in such an endeavor and presents the results. The framework developed in the book allows distributed representation of uncertain knowledge on a large and complex environment embedded in multiple cooperative agents, and effective, exact and distributed probabilistic inference.