Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
256 result(s) for "Begomovirus - chemistry"
Sort by:
A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi
RNA interference (RNAi) in plants can move from cell to cell, allowing for systemic spread of an antiviral immune response. How this cell-to-cell spread of silencing is regulated is currently unknown. Here, we describe that the C4 protein from Tomato yellow leaf curl virus can inhibit the intercellular spread of RNAi. Using this viral protein as a probe, we have identified the receptor-like kinase (RLK) BARELY ANY MERISTEM 1 (BAM1) as a positive regulator of the cell-to-cell movement of RNAi, and determined that BAM1 and its closest homolog, BAM2, play a redundant role in this process. C4 interacts with the intracellular domain of BAM1 and BAM2 at the plasma membrane and plasmodesmata, the cytoplasmic connections between plant cells, interfering with the function of these RLKs in the cell-to-cell spread of RNAi. Our results identify BAM1 as an element required for the cell-to-cell spread of RNAi and highlight that signaling components have been coopted to play multiple functions in plants.
Functional Characterization of Replication-Associated Proteins Encoded by Alphasatellites Identified in Yunnan Province, China
Alphasatellites, which encode only a replication-associated protein (alpha-Rep), are frequently found to be non-essential satellite components associated with begomovirus/betasatellite complexes, and their presence can modulate disease symptoms and/or viral DNA accumulation during infection. Our previous study has shown that there are three types of alphasatellites associated with begomovirus/betasatellite complexes in Yunnan province in China and they encode three corresponding types of alpha-Rep proteins. However, the biological functions of alpha-Reps remain poorly understood. In this study, we investigated the biological functions of alpha-Reps in post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) using 16c and 16-TGS transgenic Nicotiana benthamiana plants. Results showed that all the three types of alpha-Rep proteins were capable of suppressing the PTGS and reversing the TGS. Among them, the alpha-Rep of Y10DNA1 has the strongest PTGS and TGS suppressor activities. We also found that the alpha-Rep proteins were able to increase the accumulation of their helper virus during coinfection. These results suggest that the alpha-Reps may have a role in overcoming host defense, which provides a possible explanation for the selective advantage provided by the association of alphasatellites with begomovirus/betasatellite complexes.
Viral Metagenomics: Analysis of Begomoviruses by Illumina High-Throughput Sequencing
Traditional DNA sequencing methods are inefficient, lack the ability to discern the least abundant viral sequences, and ineffective for determining the extent of variability in viral populations. Here, populations of single-stranded DNA plant begomoviral genomes and their associated beta- and alpha-satellite molecules (virus-satellite complexes) (genus, Begomovirus; family, Geminiviridae) were enriched from total nucleic acids isolated from symptomatic, field-infected plants, using rolling circle amplification (RCA). Enriched virus-satellite complexes were subjected to Illumina-Next Generation Sequencing (NGS). CASAVA and SeqMan NGen programs were implemented, respectively, for quality control and for de novo and reference-guided contig assembly of viral-satellite sequences. The authenticity of the begomoviral sequences, and the reproducibility of the Illumina-NGS approach for begomoviral deep sequencing projects, were validated by comparing NGS results with those obtained using traditional molecular cloning and Sanger sequencing of viral components and satellite DNAs, also enriched by RCA or amplified by polymerase chain reaction. As the use of NGS approaches, together with advances in software development, make possible deep sequence coverage at a lower cost; the approach described herein will streamline the exploration of begomovirus diversity and population structure from naturally infected plants, irrespective of viral abundance. This is the first report of the implementation of Illumina-NGS to explore the diversity and identify begomoviral-satellite SNPs directly from plants naturally-infected with begomoviruses under field conditions.
Begomoviral Movement Protein Effects in Human and Plant Cells: Towards New Potential Interaction Partners
Geminiviral single-stranded circular DNA genomes replicate in nuclei so that the progeny DNA has to cross both the nuclear envelope and the plasmodesmata for systemic spread within plant tissues. For intra- and intercellular transport, two proteins are required: a nuclear shuttle protein (NSP) and a movement protein (MP). New characteristics of ectopically produced Abutilon mosaic virus (AbMV) MP (MPAbMV), either authentically expressed or fused to a yellow fluorescent protein or epitope tags, respectively, were determined by localization studies in mammalian cell lines in comparison to plant cells. Wild-type MPAbMV and the distinct MPAbMV: reporter protein fusions appeared as curled threads throughout mammalian cells. Co-staining with cytoskeleton markers for actin, intermediate filaments, or microtubules identified these threads as re-organized microtubules. These were, however, not stabilized by the viral MP, as demonstrated by nocodazole treatment. The MP of a related bipartite New World begomovirus, Cleome leaf crumple virus (ClLCrV), resulted in the same intensified microtubule bundling, whereas that of a nanovirus did not. The C-terminal section of MPAbMV, i.e., the protein’s oligomerization domain, was dispensable for the effect. However, MP expression in plant cells did not affect the microtubules network. Since plant epidermal cells are quiescent whilst mammalian cells are proliferating, the replication-associated protein RepAbMV protein was then co-expressed with MPAbMV to induce cell progression into S-phase, thereby inducing distinct microtubule bundling without MP recruitment to the newly formed threads. Co-immunoprecipitation of MPAbMV in the presence of RepAbMV, followed by mass spectrometry identified potential novel MPAbMV-host interaction partners: the peptidyl-prolyl cis-trans isomerase NIMA-interacting 4 (Pin4) and stomatal cytokinesis defective 2 (SCD2) proteins. Possible roles of these putative interaction partners in the begomoviral life cycle and cytoskeletal association modes are discussed.
Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral-conserved nucleotide motif
Geminiviridae consists of a large group of single-stranded DNA viruses that cause tremendous losses worldwide. Frequent mixed infection and high rates of recombination and mutation allow them to adapt rapidly to new hosts and overcome hosts’ resistances. Therefore, an effective strategy able to confer plants with resistance against multiple begomoviruses is needed. In the present study, artificial zinc finger proteins were designed based on a conserved sequence motif of begomoviruses. DNA-binding affinities and specificities of these artificial zinc fingers were evaluated using electrophoretic mobility shift assay. Artificial zinc finger nuclease (AZFNs) were then constructed based on the ones with the highest DNA-binding affinities. In vitro digest and transient expression assay showed that these AZFNs can efficiently cleave the target sequence and inhibit the replication of different begomoviruses. These results suggest that artificial zinc finger protein technology may be used to achieve resistance against multiple begomoviruses.
A Novel Prokaryotic Promoter Identified in the Genome of Some Monopartite Begomoviruses
Geminiviruses are known to exhibit both prokaryotic and eukaryotic features in their genomes, with the ability to express their genes and even replicate in bacterial cells. We have demonstrated previously the existence of unit-length single-stranded circular DNAs of Ageratum yellow vein virus (AYVV, a species in the genus Begomovirus, family Geminiviridae) in Escherichia coli cells, which prompted our search for unknown prokaryotic functions in the begomovirus genomes. By using a promoter trapping strategy, we identified a novel prokaryotic promoter, designated AV3 promoter, in nts 762-831 of the AYVV genome. Activity assays revealed that the AV3 promoter is strong, unidirectional, and constitutive, with an endogenous downstream ribosome binding site and a translatable short open reading frame of eight amino acids. Sequence analyses suggested that the AV3 promoter might be a remnant of prokaryotic ancestors that could be related to certain promoters of bacteria from marine or freshwater environments. The discovery of the prokaryotic AV3 promoter provided further evidence for the prokaryotic origin in the evolutionary history of geminiviruses.
Tomato leaf curl Kerala virus (ToLCKeV) AC3 protein forms a higher order oligomer and enhances ATPase activity of replication initiator protein (Rep/AC1)
Background Geminiviruses are emerging plant viruses that infect a wide variety of vegetable crops, ornamental plants and cereal crops. They undergo recombination during co-infections by different species of geminiviruses and give rise to more virulent species. Antiviral strategies targeting a broad range of viruses necessitate a detailed understanding of the basic biology of the viruses. ToLCKeV, a virus prevalent in the tomato crop of Kerala state of India and a member of genus Begomovirus has been used as a model system in this study. Results AC3 is a geminiviral protein conserved across all the begomoviral species and is postulated to enhance viral DNA replication. In this work we have successfully expressed and purified the AC3 fusion proteins from E. coli . We demonstrated the higher order oligomerization of AC3 using sucrose gradient ultra-centrifugation and gel-filtration experiments. In addition we also established that ToLCKeV AC3 protein interacted with cognate AC1 protein and enhanced the AC1-mediated ATPase activity in vitro. Conclusions Highly hydrophobic viral protein AC3 can be purified as a fusion protein with either MBP or GST. The purification method of AC3 protein improves scope for the biochemical characterization of the viral protein. The enhancement of AC1-mediated ATPase activity might lead to increased viral DNA replication.
Molecular identification and the complete nucleotide sequence of TYLCV isolate from Shanghai of China
Tomato yellow leaf curl virus (TYLCV) belongs to the genus Begomovirus, family Geminiviridae. It is transmitted by the whitefly Bemisia tabaci. A pair of primers was designed according to the specific sequence of the TYLCV gene and used in the PCR detection of the virus in the infected tissues of tomato grown in the Shanghai area of China. DNA was extracted from leaves, fruits, seeds, and roots of infected tomato plants separately. The results showed that the target fragment of about 570 bp could be isolated from the leaves, fruits, roots of infected tomato plants, but not from the seeds. Thus, the PCR-based detection technology for the Shanghai TYLCV (TYLCV-Sh10) has been established. Primers were then designed based on the sequence of the 570 bp fragment to obtain the complete DNA-A sequence of TYLCV-Sh10 by genome walking. Sequencing results indicated that the DNA-A sequence of TYLCV-Sh10 contained 2781 nt that included six ORFs. BLAST results showed that DNA-A of TYLCV-Sh10 had low homology with the characterized TYLCV in China (TYLCCNV) except TYLCV-ZJ8 (TYLCV isolated from Zhejiang China). But it was most closely related to TYLCV-USA (99.28% sequence identity). TYLCV-Sh10, TYLCV-ZJ8, TYLCV-USA, TYLCV-Mex, and TYLCV-Eg formed an independent branch by pairwise comparison and phylogenetic analysis. All these results strongly suggested that Sh10 was an isolate of America or Africa TYLCV.
Molecular characterization and phylogenetic relationships of two new bipartite begomovirus infecting malvaceous plants in Yucatan, Mexico
Sida acuta and Corchorus siliquosus plants showing yellow mosaic and yellow vein symptoms, respectively, were collected in the Yucatan Peninsula, Mexico. Total DNA was isolated from both plant species and used for the amplification, cloning, and sequencing of the Begomovirus genome. Nucleotide comparison of the complete DNA-A component isolated from S. acuta and C. siliquosus confirmed the presence of two distinct begomoviruses species. Based on phenotypic symptoms observed in infected field plants, the names Sida yellow mosaic Yucatan virus (SiYMYuV) and Corchorus yellow vein Yucatan virus (CoYVYuV) were proposed. The SiYMYuV DNA-A shared the highest nucleotide identity (86%) with the Okra yellow mosaic Mexico virus (OkYMMV). The complete DNA-B component shared the highest nucleotide identity (80%) with CoYVYuV. The CoYVYuV DNA-A shared the highest nucleotide identity (84%) with SiYMYuV. The 166-nt common region (CR) sequence for the DNA-A and DNA-B components of SiYMYuV shared a high nucleotide identity of 99%, and the 151 nt of CoYVYuV CR shared 95% of nucleotide identity. The organization and the iterated sequence of the putative AC1 binding site (located within the common region) of both isolates, were similar to that of the begomoviruses of the Western Hemisphere. Phylogenetic analyses placed the DNA-A and DNA-B of SiYMYuV and CoYVYuV in the clade containing the Abutilon mosaic virus (AbMV).
Frequent occurrence of tomato leaf curl New Delhi Virus in cotton leaf curl disease affected cotton in Pakistan
Cotton leaf curl disease (CLCuD) is the major biotic constraint to cotton production on the Indian subcontinent, and is caused by monopartite begomoviruses accompanied by a specific DNA satellite, Cotton leaf curl Multan betasatellite (CLCuMB). Since the breakdown of resistance against CLCuD in 2001/2002, only one virus, the “Burewala” strain of Cotton leaf curl Kokhran virus (CLCuKoV-Bur), and a recombinant form of CLCuMB have consistently been identified in cotton across the major cotton growing areas of Pakistan. Unusually a bipartite isolate of the begomovirus Tomato leaf curl virus was identified in CLCuD-affected cotton recently. In the study described here we isolated the bipartite begomovirus Tomato leaf curl New Delhi virus (ToLCNDV) from CLCuD-affected cotton. To assess the frequency and geographic occurrence of ToLCNDV in cotton, CLCuD-symptomatic cotton plants were collected from across the Punjab and Sindh provinces between 2013 and 2015. Analysis of the plants by diagnostic PCR showed the presence of CLCuKoV-Bur in all 31 plants examined and ToLCNDV in 20 of the samples. Additionally, a quantitative real-time PCR analysis of the levels of the two viruses in co-infected plants suggests that coinfection of ToLCNDV with the CLCuKoV-Bur/CLCuMB complex leads to an increase in the levels of CLCuMB, which encodes the major pathogenicity (symptom) determinant of the complex. The significance of these results are discussed.