Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
287 result(s) for "Berberine - administration "
Sort by:
Pharmacokinetics of a multicomponent herbal preparation in healthy Chinese and African volunteers
K-601 is an herbal formulation for influenza consisting of Lonicera japonica , Isatis indigotica , Rheum palmatum , Phellodendron chinense and Scutellaria baicalensis . In this work, we characterized the chemical constituents in K-601, identified the absorbed compounds and determined their pharmacokinetics in 6 Chinese and African volunteers by liquid chromatography with time-of-flight mass spectrometry. Similarity evaluation for chromatographic fingerprint of nine different batches showed values above 0.983. Totally, 50 components were identified in K-601. Then, 15 major prototype compounds and 17 metabolites were identified in human plasma. Major metabolic pathways included glucuronidation, sulfation, methylation, demethylation and reduction. The pharmacokinetics of the most abundant prototype compounds, berberine, jatrorrhizine, palmatine and magnoflorine were determined. Significant pharmacokinetic differences were observed between the African and Chinese subjects. The AUC s of the African is about 4–10 fold higher than that of the Chinese for the three benzylisoquinoline alkaloids. Magnoflorine, an aporphine alkaloid, was absorbed better in the Chinese than in the African. The biotransformation of K-601 by human intestinal microflora was also investigated. The major reactions included hydroxylation, methylation, demethylation, acetylation and reduction. Glucuronidation and sulfation were not observed with fecal flora. These results may be important and useful in linking data from pharmacological assays and clinical effects.
Research progress on pharmacological effects and bioavailability of berberine
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma , has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR. Graphical Abstract
Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies
Functional wound dressing with tailored physicochemical and biological properties is vital for diabetic foot ulcer (DFU) treatment. Our main objective in the current study was to fabricate Cellulose Acetate/Gelatin (CA/Gel) electrospun mat loaded with berberine (Beri) as the DFU-specific wound dressing. The wound healing efficacy of the fabricated dressings was evaluated in streptozotocin-induced diabetic rats. The results demonstrated an average nanofiber diameter of 502 ± 150 nm, and the tensile strength, contact angle, porosity, water vapor permeability and water uptake ratio of CA/Gel nanofibers were around 2.83 ± 0.08 MPa, 58.07 ± 2.35°, 78.17 ± 1.04%, 11.23 ± 1.05 mg/cm 2 /hr, and 12.78 ± 0.32%, respectively, while these values for CA/Gel/Beri nanofibers were 2.69 ± 0.05 MPa, 56.93 ± 1°, 76.17 ± 0.76%, 10.17 ± 0.21 mg/cm 2 /hr, and 14.37 ± 0.42%, respectively. The antibacterial evaluations demonstrated that the dressings exhibited potent antibacterial activity. The collagen density of 88.8 ± 6.7% and the angiogenesis score of 19.8 ± 3.8 obtained in the animal studies indicate a proper wound healing. These findings implied that the incorporation of berberine did not compromise the physical properties of dressing, while improving the biological activities. In conclusion, our results indicated that the prepared mat is a proper wound dressing for DFU management and treatment.
Tissue Distribution of Berberine and Its Metabolites after Oral Administration in Rats
Berberine (BBR) has been confirmed to have multiple bioactivities in clinic, such as cholesterol-lowering, anti-diabetes, cardiovascular protection and anti- inflammation. However, BBR's plasma level is very low; it cannot explain its pharmacological effects in patients. We consider that the in vivo distribution of BBR as well as of its bioactive metabolites might provide part of the explanation for this question. In this study, liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LC/MS(n)-IT-TOF) as well as liquid chromatography that coupled with tandem mass spectrometry (LC-MS/MS) was used for the study of tissue distribution and pharmacokinetics of BBR in rats after oral administration (200 mg/kg). The results indicated that BBR was quickly distributed in the liver, kidneys, muscle, lungs, brain, heart, pancreas and fat in a descending order of its amount. The pharmacokinetic profile indicated that BBR's level in most of studied tissues was higher (or much higher) than that in plasma 4 h after administration. BBR remained relatively stable in the tissues like liver, heart, brain, muscle, pancreas etc. Organ distribution of BBR's metabolites was also investigated paralleled with that of BBR. Thalifendine (M1), berberrubine (M2) and jatrorrhizine (M4), which the metabolites with moderate bioactivity, were easily detected in organs like the liver and kidney. For instance, M1, M2 and M4 were the major metabolites in the liver, among which the percentage of M2 was up to 65.1%; the level of AUC (0-t) (area under the concentration-time curve) for BBR or the metabolites in the liver was 10-fold or 30-fold higher than that in plasma, respectively. In summary, the organ concentration of BBR (as well as its bioactive metabolites) was higher than its concentration in the blood after oral administration. It might explain BBR's pharmacological effects on human diseases in clinic.
Berberine Protects Glomerular Podocytes via Inhibiting Drp1-Mediated Mitochondrial Fission and Dysfunction
Elevated levels of plasma free fatty acid (FFA) and disturbed mitochondrial dynamics play crucial roles in the pathogenesis of diabetic kidney disease (DKD). However, the mechanisms by which FFA leads to mitochondrial damage in glomerular podocytes of DKD and the effects of Berberine (BBR) on podocytes are not fully understood. : Using the db/db diabetic mice model and cultured mouse podocytes, we investigated the molecular mechanism of FFA-induced disturbance of mitochondrial dynamics in podocytes and testified the effects of BBR on regulating mitochondrial dysfunction, podocyte apoptosis and glomerulopathy in the progression of DKD. : Intragastric administration of BBR for 8 weeks in db/db mice significantly reversed glucose and lipid metabolism disorders, podocyte damage, basement membrane thickening, mesangial expansion and glomerulosclerosis. BBR strongly inhibited podocyte apoptosis, increased reactive oxygen species (ROS) generation, mitochondrial fragmentation and dysfunction both and . Mechanistically, BBR could stabilize mitochondrial morphology in podocytes via abolishing palmitic acid (PA)-induced activation of dynamin-related protein 1 (Drp1). : Our study demonstrated for the first time that BBR may have a previously unrecognized role in protecting glomerulus and podocytes via positively regulating Drp1-mediated mitochondrial dynamics. It might serve as a novel therapeutic drug for the treatment of DKD.
Transforming Cancer Treatment with Nanotechnology: The Role of Berberine as a Star Natural Compound
Berberine (BBR), recognized as an oncotherapeutic phytochemical, exhibits its anti-cancer properties via multiple molecular pathways. However, its clinical application is hindered by suboptimal tumor accumulation, rapid systemic elimination, and diminished bioactive concentration owing to extensive metabolic degradation. To circumvent these limitations, the strategic employment of nanocarriers and other drugs in combination with BBR is emerging as a focus to potentiate its anti-cancer efficacy. This review introduced the expansive spectrum of BBR's anti-cancer activities, BBR and other drugs co-loaded nanocarriers for anti-cancer treatments, and evaluated the synergistic augmentation of these amalgamated modalities. The aim is to provide an overview of BBR for cancer treatment based on nano-delivery. Berberine (BBR), recognized as an oncotherapeutic phytochemical, exhibits its anti-cancer properties via multiple molecular pathways. However, its clinical application is hindered by suboptimal tumor accumulation, rapid systemic elimination, and diminished bioactive concentration owing to extensive metabolic degradation. To circumvent these limitations, the strategic employment of nanocarriers and other drugs in combination with BBR is emerging as a focus to potentiate its anti-cancer efficacy. Nano-delivery systems increase drug concentration at the tumor site by improving pharmacological activity and tissue distribution, enhancing drug bioavailability. Organic nanocarriers have advantages for berberine delivery including biocompatibility, encapsulation, and controlled release of the drug. While the advantages of inorganic nanocarriers for berberine delivery mainly lie in their efficient loading ability of the drug and their slow release ability of the drug. This review introduced the expansive spectrum of BBR's anti-cancer activities, BBR and other drugs co-loaded nanocarriers for anti-cancer treatments, and evaluated the synergistic augmentation of these amalgamated modalities. The aim is to provide an overview of BBR for cancer treatment based on nano-delivery.
Berberine-Loaded Nanostructured Lipid Carriers Enhance the Treatment of Ulcerative Colitis
Berberine (BBR), a major ingredient extracted from , is a natural drug with limited oral bioavailability. We developed nanostructured lipid carriers (NLCs) as a delivery system for enhanced anti-inflammatory activity of BBR against ulcerative colitis (UC). BBR-loaded nanostructured lipid carriers (BBR-NLCs) prepared via high-pressure homogenization were evaluated for particle size, zeta potential, drug entrapment efficiency, drug loading, drug release, toxicity, and cellular uptake. The anti-UC activities of free and encapsulated BBR were evaluated in a DSS-induced acute model of UC in mice. Spherical BBR-NLCs were prepared with a particle size of 63.96± 0.31 nm, a zeta potential of +3.16 ± 0.05 mV, an entrapment efficiency of 101.97±6.34%, and a drug loading of 6.00±0.09%. BBR-NLCs showed excellent biocompatibility in vivo. Cellular uptake experiments showed that BBR-NLCs improved uptake of BBR by RAW 264.7 cells and Caco-2 cells. Oral administration of BBR-NLCs significantly alleviated colitis symptoms (DAI, colon length, spleen swelling, MPO activity) through inhibition of NF-κB nuclear translocation, decreased expression of pro-inflammatory cytokines (IL-1β, IL-6, MMP-9, CX3CR1, COX-2, TERT), and increased expression of the tight junction protein ZO-1. BBR-loaded NLCs improved colitis symptoms, which suggested that this may be a novel formulation for treatment of UC.
Effectiveness of Microwave Therapy Combined with Berberine /GelMA via COX-2/IL-1β Pathway to Treat Skeletal Muscle Injury: An in vivo Study in Rats
Skeletal muscle injuries are short-term, that occur in people who play sports and train. Regular exercise and sports populations undergo repetitive tearing and regeneration of skeletal muscle, in which muscle damage is a necessary component to produce an oxidative inflammatory response and tissue reconstruction. The primary goals of treating this illness are to reduce the disease process cycle and get rid of symptoms like swelling and inflammation at the site of localized injury. Berberine (BBR) has several pharmacological effects, including anti-inflammatory, anti-tumor, and anti-arrhythmic properties. In order to treat skeletal muscle injuries, a safe and non-toxic nanogel (BBR/GelMA) was developed for efficient berberine delivery. It also investigated whether BBR/GelMA had anti-inflammatory properties via the NF-κB pathway. Microwave irradiation was added to promote the uptake of BBR in BBR/GelMA by injured skeletal muscle and to accelerate the process of injury recovery. It turns out that the survival rates of NIH313 and L929 cells decreased to varying degrees in GelMA loaded with different concentrations of BBR, but the survival rates of the two cell lines were the highest at a concentration of 0.125 mg/mL. In this experiment, the inhibitory effect of BBR/GelMA on inflammation was studied. After NIH-313 and L929 cells were treated with GelMA loaded with different doses of BBR, it was found that the concentration of BBR/0.5 mg/mL had the best inhibitory effect on these two inflammation-inducing cell lines, and this inhibitory effect was related to the drug loading concentration. On the other hand, BBR/GelMA and microwave therapy can play an anti-inflammatory and repairing role in skeletal muscle through NF-κB pathway. In addition, microwave can accelerate the diffusion of BBR in BBR/GelMA within injured skeletal muscle, speeding up the healing process after skeletal muscle injury and shortening the disease cycle.
The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation
Long non-coding RNAs (lncRNAs) have been identified as essential mediators in neurological dysfunction. Our previous study shows that berberine (BBR) hampers the nuclear-to-cytosolic translocation of high-mobility group box 1 (HMGB1) in the process of poststroke inflammation. In this study, we explored the role of lncRNA metastasis‐associated lung adenocarcinoma transcript 1 (Malat1) in the process of BBR-induced inhibition of HMGB1 in ischemic brain. Before the 60-min MCAO surgery, the mice were pretreated with BBR (50 mg· kg −1 per day, ig) for 14 days or ICV injected with specific lentiviral vector or shRNA. We showed that MCAO caused marked increase in the expression Malat1 and HMGB1 in the ipsilateral cortex, which was significantly attenuated by pretreatment with BBR. Knockdown of Malat1 attenuated the inflammatory injury after brain ischemia, whereas overexpression of Malat1 exacerbated ischemic brain inflammation. Overexpression of Malat1 also reversed BBR-induced reduction of HMGB1 and proinflammatory cytokines. The above results suggested a potential correlation between Malat1 and stroke inflammation. Based on informatics analysis we predicted that HMGB1 was a direct downstream target of miR-181c-5p, whereas Malat1 acted as a competitive endogenous RNA (ceRNA) for miR-181c-5p targeted the 3′-UTR of HMGB1 to promote inflammation after ischemic stroke. Knockdown of Malat1 significantly decreased HMGB1 level, which could be abrogated by transfection with miR-181c-5p inhibitors. Taken together, our results demonstrate for the first time that Malat1/miR-181c-5p/HMGB1 axis may be a key pathway of BBR-induced antiinflammation effects in stroke, and they may provide a novel avenue for targeted therapy.
Approaches to Improve the Oral Bioavailability and Effects of Novel Anticancer Drugs Berberine and Betulinic Acid
The poor bioavailability of Berberine (BBR) and Betulinic acid (BA) limits the development of these promising anticancer agents for clinical use. In the current study, BBR and BA in spray dried (SD) mucoadhesive microparticle formulations were prepared. A patented dual channel spray gun technology established in our laboratory was used for both formulations. Gastrointestinal (GI) permeability studies were carried out using Caco-2 cell monolayer grown in in-vitro system. The oral bioavailability and pharmacokinetic profile of SD formulations were studied in Sprague Dawley rats. A549 orthotopic and H1650 metastatic NSCLC models were utilized for the anticancer evaluations. Pharmacokinetic studies demonstrated that BBR and BA SD formulations resulted in 3.46 and 3.90 fold respectively, significant increase in plasma Cmax concentrations. AUC levels were increased by 6.98 and 7.41 fold in BBR and BA SD formulations, respectively. Compared to untreated controls groups, 49.8 & 53.4% decrease in the tumor volumes was observed in SD formulation groups of BBR and BA, respectively. Molecular studies done on excised tumor (A549) tissue suggested that BBR in SD form resulted in a significant decrease in the survivin, Bcl-2, cyclin D1, MMP-9, HIF-1α, VEGF and CD31 expressions. Cleaved caspase 3, p53 and TUNEL expressions were increased in SD formulations. The RT-PCR analysis on H1650 tumor tissue suggested that p38, Phospho-JNK, Bax, BAD, cleaved caspase 3&8 mRNA expressions were significantly increased in BA SD formulations. Chronic administration of BBR and BA SD formulations did not show any toxicity. Due to significant increase in oral bioavailability and superior anticancer effects, our results suggest that spray drying is a superior alternative formulation approach for oral delivery of BBR and BA.