Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,243
result(s) for
"Bergmann"
Sort by:
Glial physiology and pathophysiology
by
Verkhratskiĭ, A. N. (Alekseĭ Nestorovich)
,
Butt, Arthur
in
MEDICAL
,
Nervous System Diseases -- physiopathology
,
Neuroglia
2013
Glial Physiology and Pathophysiology provides a comprehensive, advanced text on the biology and pathology of glial cells.
Coverae includes:
* the morphology and interrelationships between glial cells and neurones in different parts of the nervous systems
* the cellular physiology of the different kinds of glial cells
* the mechanisms of intra- and inter-cellular signalling in glial networks
* the mechanisms of glial-neuronal communications
* the role of glial cells in synaptic plasticity, neuronal survival and development of nervous system
* the cellular and molecular mechanisms of metabolic neuronal-glial interactions
* the role of glia in nervous system pathology, including pathology of glial cells and associated diseases - for example, multiple sclerosis, Alzheimer's, Alexander disease and Parkinson's
Neuroglia oversee the birth and development of neurones, the establishment of interneuronal connections (the 'connectome'), the maintenance and removal of these inter-neuronal connections, writing of the nervous system components, adult neurogenesis, the energetics of nervous tissue, metabolism of neurotransmitters, regulation of ion composition of the interstitial space and many, many more homeostatic functions. This book primes the reader towards the notion that nervous tissue is not divided into more important and less important cells. The nervous tissue functions because of the coherent and concerted action of many different cell types, each contributing to an ultimate output. This reaches its zenith in humans, with the creation of thoughts, underlying acquisition of knowledge, its analysis and synthesis, and contemplating the Universe and our place in it.
* An up-to-date and fully referenced text on the most numerous cells in the human brain
* Detailed coverage of the morphology and interrelationships between glial cells and neurones in different parts of the nervous system
* Describes the role og glial cells in neuropathology
* Focus boxes highlight key points and summarise important facts
* Companion website with downloadable figures and slides
Classification of Arabic Documents depending on Maximal Frequent Itemsets
2021
In this paper we introduced techniques for classifying Arabic documents depending on association rules built from maximal frequent itemsets. Parallel Maximal Itemset Miner Algorithm (PMIMA) adopted several conditions to prune search space parallelly introduced for extracting maximal frequent itemsets. Rule length, rule weight and rule majority are three classification methods exploited to classification Arabic documents. Comparing with classification results obtained depending on all frequent itemsets extracted by Apriori, we proved efficiency of ours approach.
Journal Article
FixMiner: Mining relevant fix patterns for automated program repair
2020
Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PARFixMiner’s generated plausible patches are correct.
Journal Article
Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum
by
Hawkes, Richard
,
Goldowitz, Daniel
,
Casoni, Filippo
in
Bergmann glial fibers
,
Cerebellum
,
Climbing
2021
Granule cells (GCs) are the most numerous cell type in the cerebellum and indeed, in the brain: at least 99% of all cerebellar neurons are granule cells. In this review article, we first consider the formation of the upper rhombic lip, from which all granule cell precursors arise, and the way by which the upper rhombic lip generates the external granular layer, a secondary germinal epithelium that serves to amplify the upper rhombic lip precursors. Next, we review the mechanisms by which postmitotic granule cells are generated in the external granular layer and migrate radially to settle in the granular layer. In addition, we review the evidence that far from being a homogeneous population, granule cells come in multiple phenotypes with distinct topographical distributions and consider ways in which the heterogeneity of granule cells might arise during development.
Journal Article
Molecular dynamics in a grand ensemble: Bergmann-Lebowitz model and adaptive resolution simulation
by
Zhu, Jinglong
,
Agarwal, Animesh
,
Hartmann, Carsten
in
adaptive resolution
,
Appeals
,
Bergmann-Lebowitz Liouville equation
2015
This article deals with the molecular dynamics simulation of open systems that can exchange energy and matter with a reservoir; the physics of the reservoir and its interactions with the system are described by the model introduced by Bergmann and Lebowitz (P G Bergmann and J L Lebowitz 1955 Phys. Rev. 99 578). Despite its conceptual appeal, the model did not gain popularity in the field of molecular simulation and, as a consequence, did not play a role in the development of open system molecular simulation techniques, even though it can provide the conceptual legitimation of simulation techniques that mimic open systems. We shall demonstrate that the model can serve as a tool in devising both numerical procedures and conceptual definitions of physical quantities that cannot be defined in a straightforward way by systems with a fixed number of molecules. In particular, we discuss the utility of the Bergmann-Lebowitz (BL) model for the calculation of equilibrium time correlation functions within the grand canonical adaptive resolution method (GC-AdResS) and report numerical results for the case of liquid water.
Journal Article
A phase field modeling approach of cyclic fatigue crack growth
by
Kuhn, Charlotte
,
Zohdi, Tarek
,
Müller, Ralf
in
Automotive Engineering
,
Characterization and Evaluation of Materials
,
Chemistry and Materials Science
2020
Phase field modeling of fracture has been in the focus of research for over a decade now. The field has gained attention properly due to its benefiting features for the numerical simulations even for complex crack problems. The framework was so far applied to quasi static and dynamic fracture for brittle as well as for ductile materials with isotropic and also with anisotropic fracture resistance. However, fracture due to cyclic mechanical fatigue, which is a very important phenomenon regarding a safe, durable and also economical design of structures, is considered only recently in terms of phase field modeling. While in first phase field models the material’s fracture toughness becomes degraded to simulate fatigue crack growth, we present an alternative method within this work, where the driving force for the fatigue mechanism increases due to cyclic loading. This new contribution is governed by the evolution of fatigue damage, which can be approximated by a linear law, namely the Miner’s rule, for damage accumulation. The proposed model is able to predict nucleation as well as growth of a fatigue crack. Furthermore, by an assessment of crack growth rates obtained from several numerical simulations by a conventional approach for the description of fatigue crack growth, it is shown that the presented model is able to predict realistic behavior.
Journal Article
A New Algorithm for Extracting Textual Maximal Frequent Itemsets from Arabic Documents
2021
In this paper, a new technique has been suggested for extracting textual maximal frequent itemsets named Maximal Itemset Miner Algorithm (MIMA). This algorithm begins search process through generating the best initial border in search space depending on minimum support of items in the first level that achieves the general minimum support determined by the user. Our approach for counting itemsets support combines the idea of vertical representation of the data with a queue data structure to store the itemsets. To reduce search space, the algorithm adopted several pruning conditions for each itemsets in the initial border. Experiments performed on standard textual CNN Arabic dataset and proposed method registers less execution time comparing with the Apriori algorithm when applying it on three different size datasets.
Journal Article
Solar has greater techno-economic resource suitability than wind for replacing coal mining jobs
2020
Coal mining directly employs over 7 million workers and benefits millions more through indirect jobs. However, to meet the 1.5 °C global climate target, coal's share in global energy supply should decline between 73% and 97% by 2050. But what will happen to coal miners as coal jobs disappear ?Answering this question is necessary to ensure a just transition and to ensure that politically powerful coal mining interests do not impede energy transitions. Some suggest that coal miners can transition to renewable jobs. However, prior research has not investigated the potential for renewable jobs to replace 'local' coal mining jobs. Historic analyses of coal industry declines show that coal miners do not migrate when they lose their jobs. By focusing on China, India, the US, and Australia, which represent 70% of global coal production, we investigate: (1) the local solar and wind capacity required in each coal mining area to enable all coal miners to transition to solar/wind jobs; (2) whether there are suitable solar and wind power resources in coal mining areas in order to install solar/wind plants and create those jobs; and (3) the scale of renewables deployment required to transition coal miners in areas suitable for solar/wind power. We find that with the exception of the US, several GWs of solar or wind capacity would be required in each coal mining area to transition all coal miners to solar/wind jobs. Moreover, while solar has more resource suitability than wind in coal mining areas, these resources are not available everywhere. In China, the country with the largest coal mining workforce, only 29% of coal mining areas are suitable for solar power. In all four countries, less than 7% of coal mining areas have suitable wind resources. Further, countries would have to scale-up their current solar capacity significantly to transition coal miners who work in areas suitable for solar development.
Journal Article
Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms
2010
1. The role of energy in ecological processes has hitherto been considered primarily from the standpoint that energy supply is limited. That is, traditional resource-based ecological and evolutionary theories and the recent 'metabolic theory of ecology' (MTE) all assume that energetic constraints operate on the supply side of the energy balance equation. 2. For endothermic animals, we provide evidence suggesting that an upper boundary on total energy expenditure is imposed by the maximal capacity to dissipate body heat and therefore avoid the detrimental consequences of hyperthermia - the heat dissipation limit (HDL) theory. We contend that the HDL is a major constraint operating on the expenditure side of the energy balance equation, and that processes that generate heat compete and trade-off within a total boundary defined by heat dissipation capacity, rather than competing for limited energy supply. 3. The HDL theory predicts that daily energy expenditure should scale in relation to body mass (Mb) with an exponent of about 0·63. This contrasts the prediction of the MTE of an exponent of 0·75. 4. We compiled empirical data on field metabolic rate (FMR) measured by the doubly-labelled water method, and found that they scale to Mb with exponents of 0·647 in mammals and 0·658 in birds, not significantly different from the HDL prediction (P > 0·05) but lower than predicted by the MTE (P < 0·001). The same statistical result was obtained using phylogenetically independent contrasts analysis. Quantitative predictions of the model matched the empirical data for both mammals and birds. There was no indication of curvature in the relationship between Loge FMR and LogeMb. 5. Together, these data provide strong support for the HDL theory and allow us to reject the MTE, at least when applied to endothermic animals. 6. The HDL theory provides a novel conceptual framework that demands a reframing of our views of the interplay between energy and the environment in endothermic animals, and provides many new interpretations of ecological and evolutionary phenomena.
Journal Article
More than just Stem Cells: Functional Roles of the Transcription Factor Sox2 in Differentiated Glia and Neurons
2019
The Sox2 transcription factor, encoded by a gene conserved in animal evolution, has become widely known because of its functional relevance for stem cells. In the developing nervous system, Sox2 is active in neural stem cells, and important for their self-renewal; differentiation to neurons and glia normally involves Sox2 downregulation. Recent evidence, however, identified specific types of fully differentiated neurons and glia that retain high Sox2 expression, and critically require Sox2 function, as revealed by functional studies in mouse and in other animals. Sox2 was found to control fundamental aspects of the biology of these cells, such as the development of correct neuronal connectivity. Sox2 downstream target genes identified within these cell types provide molecular mechanisms for cell-type-specific Sox2 neuronal and glial functions. SOX2 mutations in humans lead to a spectrum of nervous system defects, involving vision, movement control, and cognition; the identification of neurons and glia requiring Sox2 function, and the investigation of Sox2 roles and molecular targets within them, represents a novel perspective for the understanding of the pathogenesis of these defects.
Journal Article