Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10,718
result(s) for
"Beta decay"
Sort by:
Measurement of the two-neutrino double-beta decay half-life of$$^{130}$$ Te with the CUORE-0 experiment
by
Lim, K. E.
,
Hickerson, K. P.
,
Clemenza, M.
in
background model
,
Detection equipment
,
Measurement
2017
We report on the measurement of the two-neutrino double-beta decay half-life of [Formula omitted]Te with the CUORE-0 detector. From an exposure of 33.4 kg year of TeO [Formula omitted], the half-life is determined to be [Formula omitted] = [8.2 ± 0.2 (stat.) ± 0.6 (syst.)] [Formula omitted] 10 [Formula omitted] year. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the [Formula omitted]Te neutrinoless double-beta decay region of interest.
Journal Article
Sensitivity of NEXT-100 to neutrinoless double beta decay
by
Yahlali, N.
,
Lebrun, P.
,
Rodríguez, J.
in
Beta Decay
,
Classical and Quantum Gravitation
,
Computer simulation
2016
A
bstract
NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0
νββ
) decay of
136
Xe. The detector possesses two features of great value for 0
νββ
searches: energy resolution better than 1% FWHM at the
Q
value of
136
Xe and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 × 10
−4
counts keV
−1
kg
−1
yr
−1
. Accordingly, the detector will reach a sensitivity to the 0
νββ
-decay half-life of 2.8 × 10
25
years (90% CL) for an exposure of 100 kg·year, or 6.0 × 10
25
years after a run of 3 effective years.
Journal Article
First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment
by
Yahlali, N.
,
Lebrun, P.
,
Pérez, J.
in
Beta Decay
,
Classical and Quantum Gravitation
,
dark matter
2016
A
bstract
The NEXT experiment aims to observe the neutrinoless double beta decay of
136
Xe in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to
Q
ββ
. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype.
Single electrons resulting from the interactions of
22
Na 1275 keV gammas and electronpositron pairs produced by conversions of gammas from the
228
Th decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24
.
3 ± 1
.
4 (stat.)%, while maintaining an efficiency of 66
.
7 ± 1
.
% for signal events.
Journal Article
Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches
by
Lebrun, P.
,
Teixeira, J. M. R.
,
Pérez, J.
in
Beta decay
,
Classical and Quantum Gravitation
,
Collaboration
2021
A
bstract
The
Neutrino Experiment with a Xenon TPC
(NEXT) searches for the neutrinoless double-beta (0
νββ
) decay of
136
Xe using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of 0
νββ
decay better than 10
27
years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.
Journal Article
Neutrinoless double beta decay
2015
We review the potential to probe new physics with neutrinoless double beta decay Both the standard long-range light neutrino mechanism as well as non-standard long-range and short-range mechanisms mediated by heavy particles are discussed. We also stress aspects of the connection to lepton number violation at colliders and the implications for baryogenesis.
Journal Article
Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven
by
Dekens, W.
,
Graesser, M. L.
,
Mereghetti, E.
in
Atomic and Nuclear Physics
,
Beta decay
,
Beyond Standard Model
2017
We analyze neutrinoless double beta decay (0
νββ
) within the framework of the Standard Model Effective Field Theory. Apart from the dimension-five Weinberg operator, the first contributions appear at dimension seven. We classify the operators and evolve them to the electroweak scale, where we match them to effective dimension-six, -seven, and -nine operators. In the next step, after renormalization group evolution to the QCD scale, we construct the chiral Lagrangian arising from these operators. We develop a power-counting scheme and derive the two-nucleon 0
νββ
currents up to leading order in the power counting for each lepton-number-violating operator. We argue that the leading-order contribution to the decay rate depends on a relatively small number of nuclear matrix elements. We test our power counting by comparing nuclear matrix elements obtained by various methods and by different groups. We find that the power counting works well for nuclear matrix elements calculated from a specific method, while, as in the case of light Majorana neutrino exchange, the overall magnitude of the matrix elements can differ by factors of two to three between methods. We calculate the constraints that can be set on dimension-seven lepton-number-violating operators from 0
νββ
experiments and study the interplay between dimension-five and -seven operators, discussing how dimension-seven contributions affect the interpretation of 0
νββ
in terms of the effective Majorana mass
m
ββ
.
Journal Article
First results of the CAST-RADES haloscope search for axions at 34.67 μeV
by
Widmann, E.
,
Golm, J.
,
Bräuninger, H.
in
Classical and Quantum Gravitation
,
Cosmology
,
Dark matter
2021
A
bstract
We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67
μ
eV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of g
aγ
≳ 4 × 10
−
13
GeV
−
1
over a mass range of 34
.
6738
μ
eV
< m
a
<
34
.
6771
μ
eV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25
μ
eV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities.
Journal Article
Demonstration of neutrinoless double beta decay searches in gaseous xenon with NEXT
by
Lebrun, P.
,
Teixeira, J. M. R.
,
Fahs, A.
in
Astronomy
,
Beta decay
,
Classical and Quantum Gravitation
2023
A
bstract
The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in
136
Xe, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterráneo de Canfranc. Achieving an energy resolution of 1% FWHM at 2.6 MeV and further background rejection by means of the topology of the reconstructed tracks, NEXT-White has been exploited beyond its original goals in order to perform a neu- trinoless double beta decay search. The analysis considers the combination of 271.6 days of
136
Xe-enriched data and 208.9 days of
136
Xe-depleted data. A detailed background modeling and measurement has been developed, ensuring the time stability of the radiogenic and cosmogenic contributions across both data samples. Limits to the neutrinoless mode are obtained in two alternative analyses: a background-model-dependent approach and a novel direct background-subtraction technique, offering results with small dependence on the background model assumptions. With a fiducial mass of only 3.50 ± 0.01 kg of
136
Xe-enriched xenon, 90% C.L. lower limits to the neutrinoless double beta decay are found in the
T
1
/
2
0
ν
> 5
.
5
×
10
23
−
1
.
3
×
10
24
yr range, depending on the method. The presented techniques stand as a proof-of-concept for the searches to be implemented with larger NEXT detectors.
Journal Article
The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects
2020
CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay (
0
ν
β
β
) of
100
Mo
. In this article, we detail the CUPID-Mo detector concept, assembly and installation in the Modane underground laboratory, providing results from the first datasets. The CUPID-Mo detector consists of an array of 20
100
Mo
-enriched 0.2 kg
Li
2
MoO
4
crystals operated as scintillating bolometers at
∼
20
mK
. The
Li
2
MoO
4
crystals are complemented by 20 thin Ge optical bolometers to reject
α
events by the simultaneous detection of heat and scintillation light. We observe a good detector uniformity and an excellent energy resolution of 5.3 keV (6.5 keV) FWHM at 2615 keV, in calibration (physics) data. Light collection ensures the rejection of
α
particles at a level much higher than 99.9% – with equally high acceptance for
γ
/
β
events – in the region of interest for
100
Mo
0
ν
β
β
. We present limits on the crystals’ radiopurity:
≤
3
μ
Bq/kg
of
226
Ra
and
≤
2
μ
Bq/kg
of
232
Th
. We discuss the science reach of CUPID-Mo, which can set the most stringent half-life limit on the
100
Mo
0
ν
β
β
decay in half-a-year’s livetime. The achieved results show that CUPID-Mo is a successful demonstrator of the technology developed by the LUMINEU project and subsequently selected for the CUPID experiment, a proposed follow-up of CUORE, the currently running first tonne-scale bolometric
0
ν
β
β
experiment.
Journal Article
Precise Q value determinations for forbidden and low energy β-decays using Penning trap mass spectrometry
2023
Nuclear
β
-decay provides a laboratory for investigating weak decays occurring inside the nuclear medium. This provides information on the resulting subtle nuclear and atomic effects, and on the underlying interaction and the properties of the particles that are involved, particularly of the neutrino. The Q value of the decay corresponds to the energy equivalent of the mass difference between parent and daughter atoms, and can be precisely and accurately measured using Penning trap mass spectrometry. In this paper we discuss Penning trap Q value measurements for forbidden
β
-decays of long-lived primordial nuclides, and for a subset of
β
-unstable nuclides that could potentially undergo a very low energy decay to an excited state in the daughter nucleus. We discuss applications of these measurements to tests of systematics in detectors that perform precise
β
-spectrum measurements, as inputs for theoretical shape factor, electron branching ratio and half-life calculations, and to identify nuclides that could serve as new candidates in direct neutrino mass determination experiments.
Journal Article