Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
86
result(s) for
"Betacoronavirus - enzymology"
Sort by:
Structure of replicating SARS-CoV-2 polymerase
2020
The new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome and the transcription of its genes
1
–
3
. Here we present a cryo-electron microscopy structure of the SARS-CoV-2 RdRp in an active form that mimics the replicating enzyme. The structure comprises the viral proteins non-structural protein 12 (nsp12), nsp8 and nsp7, and more than two turns of RNA template–product duplex. The active-site cleft of nsp12 binds to the first turn of RNA and mediates RdRp activity with conserved residues. Two copies of nsp8 bind to opposite sides of the cleft and position the second turn of RNA. Long helical extensions in nsp8 protrude along exiting RNA, forming positively charged ‘sliding poles’. These sliding poles can account for the known processivity of RdRp that is required for replicating the long genome of coronaviruses
3
. Our results enable a detailed analysis of the inhibitory mechanisms that underlie the antiviral activity of substances such as remdesivir, a drug for the treatment of coronavirus disease 2019 (COVID-19)
4
.
A cryo-electron microscopy structure of the RNA-dependent RNA polymerase of SARS-CoV-2 sheds light on coronavirus replication and enables the analysis of the inhibitory mechanisms of candidate antiviral drugs.
Journal Article
Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo
2020
On 21 February 2020, a resident of the municipality of Vo’, a small town near Padua (Italy), died of pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
1
. This was the first coronavirus disease 19 (COVID-19)-related death detected in Italy since the detection of SARS-CoV-2 in the Chinese city of Wuhan, Hubei province
2
. In response, the regional authorities imposed the lockdown of the whole municipality for 14 days
3
. Here we collected information on the demography, clinical presentation, hospitalization, contact network and the presence of SARS-CoV-2 infection in nasopharyngeal swabs for 85.9% and 71.5% of the population of Vo’ at two consecutive time points. From the first survey, which was conducted around the time the town lockdown started, we found a prevalence of infection of 2.6% (95% confidence interval (CI): 2.1–3.3%). From the second survey, which was conducted at the end of the lockdown, we found a prevalence of 1.2% (95% CI: 0.8–1.8%). Notably, 42.5% (95% CI: 31.5–54.6%) of the confirmed SARS-CoV-2 infections detected across the two surveys were asymptomatic (that is, did not have symptoms at the time of swab testing and did not develop symptoms afterwards). The mean serial interval was 7.2 days (95% CI: 5.9–9.6). We found no statistically significant difference in the viral load of symptomatic versus asymptomatic infections (
P
= 0.62 and 0.74 for
E
and
RdRp
genes, respectively, exact Wilcoxon–Mann–Whitney test). This study sheds light on the frequency of asymptomatic SARS-CoV-2 infection, their infectivity (as measured by the viral load) and provides insights into its transmission dynamics and the efficacy of the implemented control measures.
The authors describe the prevalence of SARS-CoV-2 infection, viral load and the frequency of symptomatic versus asymptomatic and presymptomatic infection in an Italian town, before and after a strict 14-day lockdown.
Journal Article
Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease
2020
COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.
The SARS-CoV-2 main protease is an important target for the development of COVID-19 therapeutics. Here, the authors combine X-ray crystallography and mass spectrometry and performed a large scale fragment screening campaign, which yielded 96 liganded structures of this essential viral protein that are of interest for further drug development efforts.
Journal Article
Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea
2020
PurposeTo determine the expressions of SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) and type II transmembrane serine protease (TMPRSS2) genes in human and mouse ocular cells and comparison to other tissue cells.MethodsHuman conjunctiva and primary pterygium tissues were collected from pterygium patients who underwent surgery. The expression of ACE2 and TMPRSS2 genes was determined in human primary conjunctival and pterygium cells, human ocular and other tissue cell lines, mesenchymal stem cells as well as mouse ocular and other tissues by reverse transcription-polymerase chain reaction (RT-PCR) and SYBR green PCR.ResultsRT-PCR analysis showed consistent expression by 2 ACE2 gene primers in 2 out of 3 human conjunctival cells and pterygium cell lines. Expression by 2 TMPRSS2 gene primers could only be found in 1 out of 3 pterygium cell lines, but not in any conjunctival cells. Compared with the lung A549 cells, similar expression was noted in conjunctival and pterygium cells. In addition, mouse cornea had comparable expression of Tmprss2 gene and lower but prominent Ace2 gene expression compared with the lung tissue.ConclusionConsidering the necessity of both ACE2 and TMPRSS2 for SARS-CoV-2 infection, our results suggest that conjunctiva would be less likely to be infected by SARS-CoV-2, whereas pterygium possesses some possibility of SARS-CoV-2 infection. With high and consistent expression of Ace2 and Tmprss2 in cornea, cornea rather than conjunctiva has higher potential to be infected by SARS-CoV-2. Precaution is necessary to prevent possible SARS-CoV-2 infection through ocular surface in clinical practice.
Journal Article
Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication
by
Arutyunova, Elena
,
Tyrrell, D. Lorne
,
Khan, Muhammad Bashir
in
101/6
,
631/154/555
,
631/326/596/4130
2020
The main protease, M
pro
(or 3CL
pro
) in SARS-CoV-2 is a viable drug target because of its essential role in the cleavage of the virus polypeptide. Feline infectious peritonitis, a fatal coronavirus infection in cats, was successfully treated previously with a prodrug GC376, a dipeptide-based protease inhibitor. Here, we show the prodrug and its parent GC373, are effective inhibitors of the M
pro
from both SARS-CoV and SARS-CoV-2 with IC
50
values in the nanomolar range. Crystal structures of SARS-CoV-2 M
pro
with these inhibitors have a covalent modification of the nucleophilic Cys145. NMR analysis reveals that inhibition proceeds via reversible formation of a hemithioacetal. GC373 and GC376 are potent inhibitors of SARS-CoV-2 replication in cell culture. They are strong drug candidates for the treatment of human coronavirus infections because they have already been successful in animals. The work here lays the framework for their use in human trials for the treatment of COVID-19.
Coronavirus main protease is essential for viral polyprotein processing and replication. Here Vuong et al. report efficient inhibition of SARS-CoV-2 replication by the dipeptide-based protease inhibitor GC376 and its parent GC373, which were originally used to treat feline coronavirus infection.
Journal Article
Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur
2020
The antineoplastic drug carmofur is shown to inhibit the SARS-CoV-2 main protease (Mpro). Here, the X-ray crystal structure of Mpro in complex with carmofur reveals that the carbonyl reactive group of carmofur is covalently bound to catalytic Cys145, whereas its fatty acid tail occupies the hydrophobic S2 subsite. Carmofur inhibits viral replication in cells (EC50 = 24.30 μM) and is a promising lead compound to develop new antiviral treatment for COVID-19.A crystal structure of SARS-CoV-2 with inhibitor carmofur reveals the mechanism of action of this compound and opens the way to develop more potent drugs.
Journal Article
Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease
2020
COVID-19 was declared a pandemic on March 11 by WHO, due to its great threat to global public health. The coronavirus main protease (M
pro
, also called 3CLpro) is essential for processing and maturation of the viral polyprotein, therefore recognized as an attractive drug target. Here we show that a clinically approved anti-HCV drug, Boceprevir, and a pre-clinical inhibitor against feline infectious peritonitis (corona) virus (FIPV), GC376, both efficaciously inhibit SARS-CoV-2 in Vero cells by targeting M
pro
. Moreover, combined application of GC376 with Remdesivir, a nucleotide analogue that inhibits viral RNA dependent RNA polymerase (RdRp), results in sterilizing additive effect. Further structural analysis reveals binding of both inhibitors to the catalytically active side of SARS-CoV-2 protease M
pro
as main mechanism of inhibition. Our findings may provide critical information for the optimization and design of more potent inhibitors against the emerging SARS-CoV-2 virus.
Coronavirus main protease is essential for viral polyprotein processing and maturation. Here Fu et al. report efficient inhibition of SARS-CoV-2 replication using two inhibitors - Boceprevir and GC376 - targeting the active site of the main viral protease.
Journal Article
Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site
by
Ban, Fuqiang
,
Strynadka, Natalie C. J.
,
Caveney, Nathanael A.
in
631/154
,
631/326/596/4130
,
631/45/173
2020
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the pathogen that causes the disease COVID-19, produces replicase polyproteins 1a and 1ab that contain, respectively, 11 or 16 nonstructural proteins (nsp). Nsp5 is the main protease (M
pro
) responsible for cleavage at eleven positions along these polyproteins, including at its own N- and C-terminal boundaries, representing essential processing events for subsequent viral assembly and maturation. We have determined X-ray crystallographic structures of this cysteine protease in its wild-type free active site state at 1.8 Å resolution, in its acyl-enzyme intermediate state with the native C-terminal autocleavage sequence at 1.95 Å resolution and in its product bound state at 2.0 Å resolution by employing an active site mutation (C145A). We characterize the stereochemical features of the acyl-enzyme intermediate including critical hydrogen bonding distances underlying catalysis in the Cys/His dyad and oxyanion hole. We also identify a highly ordered water molecule in a position compatible for a role as the deacylating nucleophile in the catalytic mechanism and characterize the binding groove conformational changes and dimerization interface that occur upon formation of the acyl-enzyme. Collectively, these crystallographic snapshots provide valuable mechanistic and structural insights for future antiviral therapeutic development including revised molecular docking strategies based on M
pro
inhibition.
The SARS-CoV-2 main protease (M
pro
) is one of two cysteine proteases essential for viral replication. Here, the authors determine the crystal structure of an M
pro
acyl intermediate with its native C-terminal autocleavage sequence and the structure of a product bound active site mutant (C145A), which are of interest for antiviral drug development.
Journal Article
Structural and Evolutionary Analysis Indicate That the SARS-CoV-2 Mpro Is a Challenging Target for Small-Molecule Inhibitor Design
by
Tuszyński, Jack A.
,
Raczyńska, Agata
,
Samol, Aleksandra
in
Amino acids
,
Antiviral Agents - pharmacology
,
Betacoronavirus - drug effects
2020
The novel coronavirus whose outbreak took place in December 2019 continues to spread at a rapid rate worldwide. In the absence of an effective vaccine, inhibitor repurposing or de novo drug design may offer a longer-term strategy to combat this and future infections due to similar viruses. Here, we report on detailed classical and mixed-solvent molecular dynamics simulations of the main protease (Mpro) enriched by evolutionary and stability analysis of the protein. The results were compared with those for a highly similar severe acute respiratory syndrome (SARS) Mpro protein. In spite of a high level of sequence similarity, the active sites in both proteins showed major differences in both shape and size, indicating that repurposing SARS drugs for COVID-19 may be futile. Furthermore, analysis of the binding site’s conformational changes during the simulation time indicated its flexibility and plasticity, which dashes hopes for rapid and reliable drug design. Conversely, structural stability of the protein with respect to flexible loop mutations indicated that the virus’ mutability will pose a further challenge to the rational design of small-molecule inhibitors. However, few residues contribute significantly to the protein stability and thus can be considered as key anchoring residues for Mpro inhibitor design.
Journal Article
Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study
by
Gentile, Davide
,
Sciortino, Maria Teresa
,
Piperno, Anna
in
Amino acids
,
Antiretroviral drugs
,
Antiviral agents
2020
The current emergency due to the worldwide spread of the COVID-19 caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a great concern for global public health. Already in the past, the outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle Eastern respiratory syndrome (MERS) in 2012 demonstrates the potential of coronaviruses to cross-species borders and further underlines the importance of identifying new-targeted drugs. An ideal antiviral agent should target essential proteins involved in the lifecycle of SARS-CoV. Currently, some HIV protease inhibitors (i.e., Lopinavir) are proposed for the treatment of COVID-19, although their effectiveness has not yet been assessed. The main protease (Mpro) provides a highly validated pharmacological target for the discovery and design of inhibitors. We identified potent Mpro inhibitors employing computational techniques that entail the screening of a Marine Natural Product (MNP) library. MNP library was screened by a hyphenated pharmacophore model, and molecular docking approaches. Molecular dynamics and re-docking further confirmed the results obtained by structure-based techniques and allowed this study to highlight some crucial aspects. Seventeen potential SARS-CoV-2 Mpro inhibitors have been identified among the natural substances of marine origin. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds could be bioactive is excellent.
Journal Article